Structure–property relationships in sorption of vapours with different polarities in zeolites and zeolite-filled poly(dimethylsiloxane)

(Note: The full text of this document is currently only available in the PDF Version )

Hu Yang, Quang Trong Nguyen, Yingcai Long, Yaojun Sun and Zhenghua Ping


Abstract

Three faujasite (FAU) zeolite samples with different Si:Al ratios and OH contents were prepared from a NaY-type zeolite and their structure was studied by XRD, 29Si NMR, 27Al NMR and IR. These studies showed that the SiCl4 treatment mainly dealuminated the starting NaY zeolite, while the additional hydrothermal treatment reduced the OH groups on the zeolite surface, and the final acid treatment removed further the residual Al traces in the framework. The sorption measurement shows that the zeolite affinity to a non-polar organic solvent increases with increasing Si:Al ratio and decreasing surface OH groups. When zeolites were used to fill a poly(dimethylsiloxane) membrane, the affinity of the sorption sites and their capacity decreased, leading to a low contribution of the zeolites to the sorption capacity of the composite membranes. The sorption selectivity of zeolite-filled membranes was consistent with that of pure zeolites at low solvent activities, but at high activities, the sorption property of the PDMS matrix prevailed.


References

  1. Z. Gao, Y. Yue and W. Li, Zeolites, 1996, 16, 70 CrossRef.
  2. T. Hennepe, D. Bargeman, M. H. V. Mulder and C. A. Smolders, J. Membr. Sci., 1987, 35, 39 CrossRef.
  3. F. J. Vankelecom, D. Depré, S. D. Beukelaer and J. B. Uytterhoeven, J. Phys. Chem., 1994, 98, 1230.
  4. T. Hennepe, W. B. F. Boswerger, D. Bargeman, M. H. V. Mulder and C. A. Smolders, J. Membr. Sci., 1994, 89, 185 CrossRef.
  5. F. J. Vankelecom, D. Depré, S. D. Beukelaer and J. B. Uytterhoeven, J. Phys. Chem., 1995, 99, 1393 CrossRef CAS.
  6. M. H. V. Mulder, in Pervaporation Membrane Separation Processes, ed. R. Y. M. Huang, Elsevier, Amsterdam, 1991, p. 225 Search PubMed.
  7. Y. M. Sun and J. Chen, J. Appl. Polym. Sci., 1994, 51, 1797 CAS.
  8. E. Favre, P. Schaetzel, Q. T. Nguyen, R. Clement and J. Neel, J. Membr. Sci., 1994, 92, 169 CrossRef CAS.
  9. D. R. Paul and D. R. Kemp, Polym. Sci. Symp., 1973, 41, 79 Search PubMed.
  10. G. J. Ray, B. L. Meyers and C. L. Marshall, Zeolites, 1987, 7, 307 CrossRef.
  11. P. J. Grobet, P. A. Jacobs and H. K. Beyer, Zeolites, 1986, 6, 47 CAS.
  12. J. Sanz, V. Fornés and A. Corma, J. Chem. Soc., Faraday. Trans. 1, 1988, 84, 3113 RSC.
  13. J. Klinowski, C. A. Fyfe and G. C. Gobbi, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 3003 RSC.
  14. Y. C. Long, M. Y. Jin, Y. J. Sun, T. L. Wu, L. P. Wang and L. Fei, J. Chem. Soc., Faraday Trans. 1, 1996, 92, 1647 Search PubMed.
  15. R. L. Augustine, Heterogeneous catalysts for synthetic chemistry, Marcel Dekker, New York, 1995, p. 201 Search PubMed.
  16. G. Garralón, A. Corma and V. Fornés, Zeolites, 1989, 9, 84 CrossRef CAS.
  17. A. Janin, M. Maache, J. C. Lavalley, J. F. Joly, F. Raatz and N. Szydlowski, Zeolites, 1991, 11, 391 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.