Reactivity and characterization of adsorbed oxygen on SrTi1-xMgxO3-δ catalysts for oxidative coupling of methane

(Note: The full text of this document is currently only available in the PDF Version )

Keiichi Tomishige, Xiao-hong Li and Kaoru Fujimoto


Abstract

The reactivity of oxygen species adsorbed on SrTi1-xMgxO3-δ catalysts with methane was investigated. Temperature programmed desorption of oxygen, temperature programmed surface reaction of methane, and electron spin resonance were used for the characterization of oxygen species. It is suggested that the adsorption site is formed by the substitution of Ti4+ in Sr–Ti perovskite-type oxides with added Mg2+. It was found that this oxygen species was able to convert methane to ethane at a temperature as low as 550 K. Without CO2 on the surface, C2 hydrocarbons were formed with high selectivity in the CH4+O2 reaction. On the other hand, CO and CO2 were formed on the catalyst with CO2 pre-adsorption.


References

  1. J. S. Lee and S. T. Oyama, Catal. Rev.-Sci. Eng., 1988, 30, 249 Search PubMed.
  2. Y. Amenomiya, V. I. Birss, M. Goledzinowski, J. Galuszka and A. R. Sanger, Catal. Rev.-Sci. Eng., 1990, 32, 163 Search PubMed.
  3. E. N. Voskresenskaya, V. G. Rouguleva and A. G. Anshits, Catal. Rev.-Sci. Eng., 1995, 37, 101 Search PubMed.
  4. L. G. Tejuca, L. G. Fierro and J. M. D. Tascon, Adv. Catal., 1989, 36, 237 CAS.
  5. T. Shimizu, Catal. Rev.-Sci. Eng., 1988, 34, 355 Search PubMed.
  6. T. Tagawa and H. Imai, J. Chem. Soc., Faraday Trans. I, 1988, 84, 923 RSC.
  7. J. E. France, A. Shamsi and M. Q. Ahsan, Energy and Fuel, 1988, 2, 235 Search PubMed.
  8. T. Seiyama, Catal. Rev.- Sci. Eng., 1992, 34, 281 Search PubMed.
  9. I. Inoue, H. Sano and K. Sato, J. Mater. Sci. Lett., 1989, 8, 17 CrossRef.
  10. A. Shamia and K. Zahir, Energy and Fuel, 1989, 3, 727 Search PubMed.
  11. K. Machida and M. Enyo, J. Chem. Soc., Chem. Commun., 1987, 1639 RSC.
  12. H. Nagamoto, K. Amanuma, H. Mobutomo and H. Inoue, Chem. Lett., 1988, 237 CAS.
  13. J. A. S. P. Carreiro and M. Bearns, J. Catal., 1989, 117, 258 CAS.
  14. K. Aika, T. Moriyama, N. Takasaki and E. Iwamatsu, J. Chem. Soc., Chem. Commun., 1986, 1210 RSC.
  15. W. J. M. Vermeiren, I. D. M. L. Lenotte, J. A. Martens and P. A. Jacobs, Stud. Surf. Sci. Catal., 1991, 61, 33 CAS.
  16. P. Kassner and M. Baerns, Appl. Catal. A: General, 1996, 139, 107 CrossRef.
  17. C. Yu, Y. Shimizu and H. Arai, Chem. Lett., 1986, 563 CAS.
  18. X. Li and K. Fujimoto, Chem. Lett., 1994, 1581 CAS.
  19. K. Tomishige, X. Li and K. Fujimoto, ACS Symp. Ser., 1996, 638, 109 CAS.
  20. X. Li, K. Tomishige and K. Fujimoto, Stud. Surf. Sci. Catal., 1997, 112, 293 CAS.
  21. X. Li, K. Tomishige and K. Fujimoto, J. Japan Inst. Energy, 1995, 12, 1040 Search PubMed.
  22. C. Y. Yu, W. Z. Li, G. A. Martin and C. Mirodatos, Appl. Catal. A: General, 1997, 158, 201 CrossRef CAS.
  23. K. Otsuka, Y. Murakami, Y. Wada, A. A. Said and A. Morikawa, J. Catal., 1990, 121, 122 CAS.
  24. K. Otsuka, A. A. Said, K. Jinno and T. Komatsu, Chem. Lett., 1987, 77 CAS.
  25. M. Y. Sinev, V. N. Korchak and O. V. Krylov, Kinet. Catal., 1986, 27, 1110 Search PubMed.
  26. V. Indovina and D. Cordisci, J. Chem. Soc., Faraday Trans. I, 1982, 78, 1705 RSC.
  27. M. Che and A. J. Tench, Adv. Catal., 1983, 32, 1 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.