Behaviour of binary mixtures of an alkyl methanoate+an n-alkane. New experimental values and an interpretation using the UNIFAC model

(Note: The full text of this document is currently only available in the PDF Version )

Juan Ortega, Jose′ Plácido, Francisco Toledo, María Vidal, Enn Siimer and Jose′ L. Legido


Abstract

This paper presents an interpretation on the behaviour of mixtures containing alkyl methanoates with n-alkanes from a structural point of view. New experimental data of molar excess properties, hE and vE, are measured at 298.15 K and 101.32 kPa for this work to complete the existing information. Mixtures corresponding to methyl methanoate+n-alkanes showed excess quantities higher than expected because of the self-association of methyl methanoates, which decreases as the chain length/molar mass of alkyl methanoates increases. The consideration of autoassociation in methanoates, presented in this paper as an empirical relationship for its characterization as a function of number of carbon atoms of alkyl methanoate, was included as a specific term in the UNIFAC model that gave excellent results in the predictions of HE, with mean differences smaller than 2%. In the Nitta model the association in methanoates was considered employing different forms of molecular interactions but the results were not so good.


References

  1. J. Ortega, J. L. Legido, J. Fernández, M. López, L. Pias and M. I. Paz, Fluid Phase Equilib., 1990, 56, 219 CrossRef CAS.
  2. J. Ortega, Ber. Bunsen-Ges. Phys. Chem., 1989, 93, 730 Search PubMed.
  3. J. K. Wilmshurst, J. Mol. Spectrosc., 1957, 1, 201 CrossRef.
  4. W. Rupp, S. Hetzel, I. Ojini and P. Tassios, Ind. Eng. Chem. Process Des. Dev., 1984, 23, 391 Search PubMed.
  5. T. Nitta, E. A. Turek, N. A. Greenkorn and K. C. Chao, AIChE J., 1977, 23, 144 CrossRef CAS.
  6. J. A. Riddick, W. B. Bunger and T. K. Sakano, Organic Solvents, Techniques of Chemistry, Wiley-Interscience, New York, 4th edn., 1986, vol. 2 Search PubMed.
  7. TRC, Thermodynamic Tables Non-Hydrocarbons, Thermodynamic Research Center, The Texas A&M University, College Station, TX, 1993 Search PubMed.
  8. T. E. Daubert and R. P. Danner, Data Compilation Tables of Properties of Pure Compounds, AIChE J./DIPPR, New York, 1984 Search PubMed.
  9. TRC, Thermodynamic Tables Hydrocarbons, Thermodynamic Research Center, The Texas A&M University, College Station, TX, 1993 Search PubMed.
  10. J. Timmermans, Physico-Chemical Constants of Pure Organic Compounds, Elsevier, Amsterdam, 1965 Search PubMed.
  11. W.-D. Yan, R.-S. Lin and W.-H. Yen, Thermochim. Acta, 1990, 169, 171 CrossRef CAS.
  12. M. Diaz-Penña and C. Menduinña, Int. DAT A Ser. Sel. Data Mixtures, Ser. A, 1972, 72 Search PubMed.
  13. J. Ortega, S. Matos, M. I. Paz and E. Jiménez, J. Chem. Thermodyn., 1985, 17, 1127 CAS.
  14. M. Pintos, R. Bravo, M. Baluja, M. I. Paz, G. Roux-Desgranges and J. P. E. Grolier, Can. J. Chem., 1988, 66, 1179 CAS.
  15. F. Sarmiento, M. I. Paz, G. Roux-Desgranges and J.-P. E. Grolier, Int. DAT A Ser. Sel. Data Mixtures, Ser. A, 1985, 66 Search PubMed.
  16. J. Gmehling, J. Li and M. Schiller, Ind. Eng. Chem. Res., 1993, 32, 178 CrossRef CAS.
  17. J. Ortega and J. Plácido, Fluid Phase Equilib., 1995, 109, 205 CrossRef CAS.
  18. J. Ortega and J. L. Legido, Fluid Phase Equilib., 1994, 95, 175 CrossRef CAS.
  19. P. J. Stathis and D. P. Tassios, Ind. Eng. Chem. Process Des. Dev., 1985, 24, 701 Search PubMed.
  20. I. Nagata and Y. Kawamura, Chem. Eng. Sci., 1979, 34, 601 CrossRef CAS.
  21. C. B. Kretschmer and R. J. Wiebe, Chem. Phys., 1954, 22, 1697 CAS.
  22. A. Nath and E. Bender, Fluid Phase Equilib., 1981, 7, 275 CrossRef CAS.
  23. A. M. Blanco and J. Ortega, J. Chem. Eng. Data, 1998, 43, 638 CrossRef CAS.
  24. S. Galván, J. Ortega, P. Susial and J. A. Penña, J. Chem. Eng. Jpn., 1994, 27, 529 Search PubMed.
  25. E. González and J. Ortega, J. Chem. Eng. Data, 1995, 40, 1178 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.