Solvation structure and bromo complexation of neodymium(III) and yttrium(III) ions in solvent mixtures of N,N-dimethylformamide and N,N-dimethylacetamide

(Note: The full text of this document is currently only available in the PDF Version )

Shin-ichi Ishiguro, Yasuhiro Umebayashi, Kazusuke Kato, Satoshi Nakasone and Ryota Takahashi


Abstract

Bromo complexation of neodymium(III) and yttrium(III) in solvent mixtures of N,N-dimethylformamide (DMF) and N,N-dimethylacetamide (DMA) has been studied by precise titration calorimetry, 89Y NMR and extended X-ray absorption fine structure (EXAFS). With regard to neodymium(III), calorimetric data in the mixture of DMA content x are explained satisfactorily in terms of formation of mononuclear NdBrn(3-n)+(n=1, 2 at x=0.5 and n=1, 2, 3 at x=0.6, 0.75, 0.85). With yttrium(III), calorimetric data are also explained well in terms of formation of mononuclear YBrn(3-n)+(n=1, 2 at x=0.25, 0.5, 0.6 and n=1, 2, 3 at x=0.65, 0.75, 0.85). Formation enthalpy and entropy values of the monobromo complex remain practically unchanged up to x≈0.5, and then significantly increase with increasing x. It is thus suggested in both metal(III) systems that outer-sphere bromo complexes are formed in the DMF-rich mixture, while inner-sphere bromo complexes are formed in the DMA-rich mixture in equilibrium with the outer-sphere ones, and the formation of inner-sphere complexes becomes more favorable with increasing DMA content. The marked difference in the complexation in DMF and DMA may be ascribed to the solvation steric effect. The solvation steric effect is enhanced with increasing DMA content leading to an enhanced complexation and a simultaneous geometry transition from outer- to inner-sphere coordination of the bromide ion. Evidence of the geometry transition has been obtained by EXAFS for neodymium(III), and by 89Y NMR for yttrium(III). Interestingly, although ionic radii of neodymium(III) and yttrium(III) ions are significantly different, no appreciable metal-ion dependence is found with the geometry transition from outer- to inner-sphere bromo complex. This indicates that the geometry transition of the metal(III) solvate ion from eight- to seven-coordination is not always the necessary condition for the transition from outer- to inner-sphere complexation.


References

  1. F. H. Spedding and J. E. Wheelwright, J. Am. Chem. Soc., 1956, 78, 1369 CrossRef.
  2. R. H. Betts and O. F. Dahlinger, Can. J. Chem., 1959, 37, 91 CAS.
  3. J. L. Mackey, J. E. Powell and F. H. Spedding, J. Am. Chem. Soc., 1962, 84, 2047 CrossRef CAS.
  4. K. B. Yatsimirski and G. A. Prik, Russ. J. Inorg. Chem., 1962, 7, 30.
  5. G. A. Prik, Russ. J. Inorg. Chem., 1963, 8, 1097.
  6. J. Fuger and B. B. Cunningham, J. Inorg. Nucl. Chem., 1965, 27, 1079 CAS.
  7. T. Moeller and R. Ferrus, J. Inorg. Nucl. Chem., 1962, 1, 49 CAS.
  8. P. L. Edelin, D. L. Praudiere and L. A. K. Staveley, J. Inorg. Nucl. Chem., 1964, 26, 1713 CrossRef.
  9. T. Moeller and R. Ferrus, J. Inorg. Nucl. Chem., 1961, 20, 261 CAS.
  10. R. B. Lauffer, Chem. Rev., 1987, 87, 901 CrossRef CAS.
  11. P. H. Smith, J. R. Brainard, D. E. Morris, G. D. Jarvinen and R. R. Ryan, J. Am. Chem. Soc., 1989, 111, 7437 CrossRef CAS.
  12. C. F. G. C. Geraldes, A. D. Sherry, R. D. Brown and S. H. Koenig, Magn. Reson. Chem., 1986, 3, 242 CAS.
  13. J. L. Sessler, T. D. Moddy, G. W. Hemmi and V. Lynch, Inorg. Chem., 1993, 32, 3175 CrossRef CAS.
  14. I. K. Adzamli, H. Gries, D. Johnson and M. Blau, J. Med. Chem., 1989, 32, 139 CrossRef.
  15. M. Komiyama, J. Biochem., 1995, 118, 665 CAS.
  16. N. Takeda, T. Imai, M. Irisawa, J. Sumaoka, M. Yashiro, H. Shigekawa and M. Komiyama, Chem. Lett., 1996, 599 CAS.
  17. M. Yashiro, A. Ishikubo and M. Komiyama, J. Biochem., 1996, 120, 1067 CAS.
  18. S. Ishiguro, K. Kato, S. Nasone, R. Takahashi and K. Ozutsumi, J. Chem. Soc., Faraday Trans., 1996, 92, 1869 RSC.
  19. R. Takahashi and S. Ishiguro, J. Chem. Soc., Faraday Trans., 1991, 87, 3379 RSC.
  20. S. Ishiguro, Y. Umebayashi, K. Kato, R. Takahashi and K. Ozutsumi, J. Chem. Soc., Faraday Trans., 1998, 94, 3607 RSC.
  21. M. Nomura, A. Koyama and M. Sakurai, KEK Report, 91-1, National Laboratory for High Energy Physics, Tukuba, Japan, 1991 Search PubMed.
  22. D. W. Marquardt, J. Soc. Ind. Appl. Math., 1963, 11, 4 Search PubMed.
  23. H. Suzuki, PhD Thesis, Tokyo Institute of Technology, Tokyo, 1989.
  24. K. Ozutsumi and T. Kawashima, Polyhedron, 1992, 11, 169 CrossRef CAS.
  25. E. A. Stern, D. E. Sayers and F. W. Lytle, Phys. Rev. B, 1975, 11, 4836 CrossRef CAS.
  26. B. Lengelar and P. Eisenberger, Phys. Rev. B, 1980, 21, 4507 CrossRef CAS.
  27. B.-K. Teo and P. Lee, J. Am. Chem. Soc., 1979, 101, 2815 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.