Frontier molecular orbital correlations for predicting rate constants between alkenes and the tropospheric oxidants NO3, OH and O3

(Note: The full text of this document is currently only available in the PDF Version )

Martin D. King, Carlos E. Canosa-Mas and Richard P. Wayne


Abstract

Two types of correlation relating the value of the energy of the highest occupied molecular orbital (HOMO) of an alkene to the logarithm of its rate constant for reaction with NO3, OH or O3 have been formulated. Both correlations have been shown to be consistent with frontier molecular orbital theory. The correlation can be used to predict the rate constants for the reaction of an alkene with NO3, OH or O3 by calculating the value of the HOMO energy of the alkene. The accuracy of these predictions is quoted as a 48, 40 and 97% minimum probability that the predicted rate constant for reaction of an alkene with NO3, O3 and OH, respectively, will be within a factor of two of the measured rate constant. This probability is increased to a minimum of 73, 80 and approaches 100% for the reactions of NO3, O3 and OH, respectively, with conjugated dienes.


References

  1. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons, Chichester, 1996 Search PubMed.
  2. M. J. S. Dewar and R. C. Dougherty, The PMO Theory of Organic Chemistry, Plenum Press, New York, 1975 Search PubMed.
  3. T. A. Albright, J. K. Burdett and M.-H. Whangbo, Orbital Interactions in Chemistry, John Wiley & Sons, New York, 1985 Search PubMed.
  4. G. Marston, P. S. Monks and R. P. Wayne, Correlations betweenrate parameters of free radicals and calculated molecular properties, in General Aspects of Free Radicals Chemistry, ed. Z. Alfassi, John Wiley and Sons, Chichester, in the press Search PubMed.
  5. R. W. S. Aird, C. E. Canosa-Mas, D. J. Cook, G. Marston, P. S. Monks, R. P. Wayne and E. Ljungström, J. Chem. Soc. Faraday Trans., 1992, 88, 1093 RSC.
  6. R. Atkinson, J. Phys. Chem. Ref. Data, 1997, 26, 215 CAS.
  7. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209 CrossRef CAS.
  8. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian94, Revision D.4, Gaussian, Inc., Pittsburgh PA, 1995 Search PubMed.
  9. J. J. P. Stewart, J. Am. Chem. Soc., 1989, 10, 221 CAS.
  10. A. Weaver, D. W. Arnold, S. E. Bradforth and D. M. Neumark, J. Chem. Phys., 1991, 94, 1740 CrossRef CAS.
  11. P. A. Schulz, R. D. Mead, P. L. Jones and W. C. Lineberger, J. Chem. Phys., 1982, 77, 1153 CrossRef CAS.
  12. R. P. Wayne, I. Barnes, P. Biggs, J. P. Burrows, C. E. Canosa-Mas, J. Hjorth, G. Le Bras, G. K. Moortgat, D. Perner, G. Poulet, G. Restelli and H. Sidebottom, Atmos. Environ., 1991, 25A, 1 CAS.
  13. W. G. Richards, Int. J. Mass. Spectrom. Ion. Phys., 1969, 2, 419 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.