Density functional studies of the pseudo-π.aσ charge-transfer complex between cyclopropane and chlorine monofluoride

(Note: The full text of this document is currently only available in the PDF Version )

A Garcia, J M. Elorza and J M. Ugalde


Abstract

The pseudo-π.aσ charge-transfer complex formed by cyclopropane and chlorine monofluoride was studied with various approximate pure and hybrid density functional methods and the second-order Møller–Plesset (MP2) theory. The calculations demonstrate that one hybrid method, namely the so-called B3LYP, leads to reasonably good estimates of the experimentally measured rotational constants. In addition, the predicted B3LYP intermolecular distance is found also to be close to the experimental value. This lends confidence to the prediction of the intermolecular interaction energy, which is found to be 1.42 kcal mol-1. It was also possible to calculate the number and energies of the vibrational states supported by the intermolecular stretching mode. Only five such states have been found. The performances of the various approximate density functionals and MP2 theory are compared and discussed. Finally, the analysis of the natural bond orbitals, which has been found to be very valuable in understanding the nature of the weak intermolecular interaction is discussed.


References

  1. A. C. Legon, J. Chem. Soc., Faraday Trans., 1995, 91, 1881 RSC.
  2. A. C. Legon, Chem. Commun., 1996, 109 RSC.
  3. D. J. Millen, Can. J. Chem., 1985, 63, 1477 CAS.
  4. A. C. Legon, C. A. Rego and A. L. Wallwork, J. Chem. Phys., 1992, 97, 3050 CrossRef CAS.
  5. R. S. Mulliken and W. B. Pearson, Molecular Complexes, Wiley-Interscience, New York, 1969 Search PubMed.
  6. G. Chalasinski and M. M. Szczesniak, Chem. Rev., 1994, 94, 1723 CrossRef CAS.
  7. G. Chalasinski and M. Gutowski, Chem. Rev., 1988, 88, 943 CrossRef CAS.
  8. P. Hobza and R. Zahradnik, Chem. Rev., 1988, 88, 871 CrossRef CAS.
  9. T. Kobayashi, H. Matsuzawa and S. Iwata, Bull. Chem. Soc. Jpn., 1994, 67, 3172 CAS.
  10. B. B. Laird, R. B. Ross and T. Ziegler, ACS Symp. Ser., 1996, no. 629.
  11. S. Kristyan and P. Pulay, Chem. Phys. Lett., 1994, 229, 175 CrossRef CAS.
  12. J. M. Perez-Jorda and A. D. Becke, Chem. Phys. Lett., 1995, 233, 134 CrossRef CAS.
  13. E. Ruiz, D. R. Salahub and A. Vela, J. Phys. Chem., 1996, 100, 12265 CrossRef CAS.
  14. J. Zhang, C.-Y. Zhao and X.-Z. You, J. Phys. Chem. A., 1997, 101, 2879 CrossRef CAS.
  15. A. Garcia, E. M. Cruz, C. Sarasola and J. M. Ugalde, J. Phys. Chem. A., 1997, 101, 3021 CrossRef CAS.
  16. K. Hinds, J. H. Holloway and A. C. Legon, J. Chem. Soc., Faraday Trans., 1997, 93, 373 RSC.
  17. J. March, Advanced Organic Chemistry, Wiley-Interscience, New York, 1985, p. 676 Search PubMed.
  18. J. M. Ugalde, C. Sarasola and M. Aguado, J. Phys. B., 1994, 27, 423 CrossRef CAS.
  19. A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS.
  20. A. Garcia, E. M. Cruz, C. Sarasola and J. M. Ugalde, J. Mol. Struct. (Theochem), 1996, 363, 279 CrossRef CAS.
  21. A. Garcia, E. M. Cruz, C. Sarasola and J. M. Ugalde, J. Mol. Struct. (Theochem), 1997, 397, 191 CrossRef CAS.
  22. A. D. McLean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639 CrossRef CAS; R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650 CrossRef CAS.
  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian 94/DFT (Revision A.1), Gaussian, Pittsburgh, PA, 1995.
  24. For a complete explanation of the acronyms used in this paper, see: M. J. Frisch, A. Frisch and J. B. Foresman, Gaussian 94 User's Reference, Gaussian Pittsburgh, PA, 1995, pp. 58–63 Search PubMed.
  25. S. F. Boyds and F. Bernardi, Mol. Phys., 1970, 19, 553; D. W. Schwenke and B. D. Truhlar, J. Chem Phys., 1985, 82, 2418 CrossRef CAS.
  26. A. E. Read, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899 CrossRef CAS; E. D. Glendening and F. Weinhold, J. Comput. Chem., 1998, 19, 593 CrossRef CAS; E. D. Glendening and F. Weinhold, J. Comput. Chem., 1998, 19, 610 CrossRef CAS; E. D. Glendening, J. K. Badenhoop and F. Weinhold, J. Comput. Chem., 1998, 19, 628 CrossRef CAS.
  27. A. E. Glendening, A. E. Read, J. E. Carpenter and F. Weinhold, NBO Version 3.1 Search PubMed.
  28. C. Møller and M. S. Plesset, Phys. Rev., 1934, 46, 618 CrossRef CAS.
  29. X. Lopez, J. M. Ugalde, C. Sarasola and F. P. Cossio, Can. J. Chem., 1996, 74, 1032 CAS.
  30. A. C. Legon, in Atomic and Molecular Beam Methods, ed. G. Scoles, Oxford University Press, New York, 1993, vol. 2, ch. 9 Search PubMed.
  31. D. Bohm, Quantum Theory, Prentice-Hall, Englewood Cliffs, NJ, 1951, p. 340 Search PubMed.
  32. H. Margenau and M. Lewis, Rev. Mod. Phys., 1959, 31, 569 CrossRef CAS (see especially pp. 594–596).
  33. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes, Cambridge University Press, Cambridge, 1986 Search PubMed.
  34. T. G. Waech and R. B. Bernstein, J. Chem. Phys., 1967, 46, 4095 CrossRef.
  35. K. Hinds, J. H. Holloway and A. C. Legon, J. Chem. Soc., Faraday Trans., 1996, 92, 1219 Search PubMed.
  36. H. I. Bloemink, S. A. Cooke, K. Hinds and A. C. Legon, J. Chem. Soc., Faraday Trans., 1995, 91, 1981 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.