Benzene cation radical in mesoporous silicate: EPR detection of unusually stabilized Jahn–Teller distortion

(Note: The full text of this document is currently only available in the PDF Version )

Kazumi Toriyama and Masaharu Okazaki


Abstract

It has been found that the benzene cation radical (Bz+) is produced by radiolysis of a phenyl-substituted mesoporous silicate MCM-41 (Ph-MCM), and it shows a static Jahn–Teller distortion even at 77 K. The distorted structure deduced from the electron paramagnetic resonance (EPR) spectrum is almost equal to that reported for the cation radical observed in CFCl3 at 4.2 K, the singly occupied molecular orbital (SOMO) of which has been assigned to Ψs. On the other hand, Bz+ produced by radiolysis of benzene molecules adsorbed on Ph-MCM as well as on MCM-41 give dynamically averaged EPR spectra at 77 K, although the dynamics are frozen at 4.2 K. On radiolysis of "‘as-synthesized’' phenyl-MCM, not Bz+ but C6H5+–Si–R is generated. The trapping sites of Bz+ in the mesoporous silicates and the mechanism of stabilization of the distorted form are discussed.


References

  1. F. Hughes, R. D. Kirk and F. W. Patten, J. Chem. Phys., 1964, 40, 8726 CrossRef.
  2. O. Edlund, P. O. Kinell, A. Lund and A. Shimizu, J. Chem. Phys., 1967, 46, 3679 CrossRef CAS.
  3. T. Komatsu and A. Lund, J. Phys. Chem., 1972, 76, 1727 CrossRef CAS.
  4. O. Edlund, P. O. Kinell, L. Anders and A. Shimizu, Adv. Chem. Ser., 1969, 82, 311 Search PubMed.
  5. M. K. Carter and G. Vinkow, J. Chem. Phys., 1967, 47, 292 CAS.
  6. A. D. Lieth, Z. Naturforsh., 1961, 16a, 641 Search PubMed.
  7. W. D. Hobey and A. D. McLachland, J. Chem. Phys., 1960, 33, 1695 CAS.
  8. M. Iwasaki, K. Toriyama and K. Nunone, J. Chem. Soc., Chem. Commun., 1983, 320 RSC.
  9. M. Iwasaki and K. Toriyama, Proc. Annu. Meet. Chem. Soc. Jpn., 1984, 1817, 81 Search PubMed.
  10. J. S. Beck, J. C. Varturi, W. J. Roth, M. E. Leonowics, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834 CrossRef CAS.
  11. D. Zhao and D. Goldfarb, J. Chem. Soc., Chem. Commun., 1995, 875 RSC.
  12. S. L. Burkett, S. D. Sims and S. Mann, J. Chem. Soc., Chem. Commun., 1996, 1367 RSC.
  13. C.-Y. Chen, H.-X. Li and M. E. Davis, Microporous Mater., 1993, 2, 17 CrossRef CAS.
  14. X. S. Zhao, G. Q. Lu, A. K. Whittaker, G. J. Millar and H. Y. Zhu, J. Phys. Chem. B, 1997, 101, 6525 CrossRef CAS.
  15. M. Iwasaki, K. Toriyama and B. Eda, J. Chem. Phys., 1965, 42, 63 CAS.
  16. D. N. R. Rao, H. Chandra and M. C. R. Symons, J. Chem. Soc., Perkin Trans. 2, 1984, 1201 RSC.
  17. D. N. R. Rao and M. C. R. Symons, J. Chem. Soc., Perkin Trans. 2, 1985, 991 RSC.
  18. P. H. Kasai, E. Hedaya and B. Whipple, J. Am. Chem. Soc., 1969, 91, 4364 CrossRef CAS.
  19. S. Ohnishi, T. Tanei and I. Nitta, J. Chem. Phys., 1963, 37, 2402 CrossRef.
  20. A. R. Lyons, M. C. R. Symons and J. K. Yandell, Macromol. Chem., 1972, 157, 103 CAS.
  21. B. Eda and M. Iwasaki, J. Polym. Sci. A, 1986, 24, 2119 CAS.
  22. R. Erickson, M. Lindgre, A. Lund and L. Sjoqvist, Colloids Surfaces A, 1993, 72, 207 Search PubMed.
  23. M. Okazaki and K. Toriyama, J. Phys. Chem., 1993, 97, 8212 CrossRef CAS.
  24. K. Toriyama and M. Okazaki, Acta Chem. Scand., 1997, 51, 167 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.