On the role of zinc oxide nanometric clusters in preparation of ZnNaY zeolite by ion exchange

(Note: The full text of this document is currently only available in the PDF Version )

V B. Kazansky, V Yu. Borovkov, A I. Serykh, R A. van Santen and P J. Stobbelaar


Abstract

Dehydration of Zn2+ exchanged NaY zeolite was studied by means of DRIFT spectra of adsorbed dihydrogen and carbon monoxide as molecular probes. Unlike alkaline earth forms of faujasites dehydration of ZnY zeolite at moderately high temperatures results in the formation of bridging protons and nanometric ZnO or mixed hydroxylated ZnO microclusters instead of bridging hydroxy groups and MeOH+ cations. After subsequent dehydration at above 573 K the zinc oxide clusters interact with acidic protons resulting in Zn2+ ions localized at SII sites. These sites adsorb hydrogen in its molecular form. Heterolytic dissociative adsorption does not take place even at elevated temperatures.


References

  1. N. Herron, Y. Wang, M. M. Eddy, G. D. Stucky, D. E. Cox, K. Moller and T. Bein, J. Am. Chem. Soc., 1989, 111, 530 CrossRef CAS.
  2. M. Wark, H.-J. Schwenn, G. Schulz-Ekloff and N. I. Jaeger, Ber. Bunsen-Ges. Phys. Chem., 1992, 96, 1727 CAS.
  3. M. Wark, H. Kessler and G. Schulz-Ekloff, Microporous Mater., 1997, 8, 241 CrossRef CAS.
  4. X. S. Zhao and G. Q. Lu, J. Porous Mater., 1996, 3, 61 Search PubMed.
  5. C. L. Angell and P. C. Schaffer, J. Phys. Chem., 1966, 70, 1413 CrossRef CAS.
  6. V. B. Kazansky, L. M. Kustov and A. Yu. Khodakov, Stud. Surf. Sci. Catal., 1989, 49B, 1173.
  7. V. B. Kasansky, V. Yu. Borovkov and G. H. Karge, J. Chem. Soc., Faraday Trans., 1997, 93, 1843 RSC.
  8. L. M. Kustov and V. B. Kazansky, J. Chem. Soc., Faraday Trans., 1991, 87, 2675 RSC.
  9. V. B. Kazansky, V. Yu. Borovkov and H. G. Karge, J. Chem. Soc., Faraday Trans., 1997, 93, 1847 Search PubMed.
  10. D. W. Breck, Zeolite Molecular Sieves, Wiley, New York, 1974 Search PubMed.
  11. V. B. Kazansky, V. Yu. Borovkov, A. Serich and H. G. Karge, Microporous Mesoporous Mater., 1998, 22, 251 CrossRef CAS.
  12. W. Loewenstein, Am. Mineral., 1942, 39, 92.
  13. S. Bordiga, D. Scarano, G. Spoto, A. Zecchina, C. Lamberti and C. Otero Arean, Vib. Spectrosc., 1993, 5, 69 CrossRef CAS.
  14. P. Ugliengo, V. P. Saunders and E. Garrone, J. Phys. Chem., 1989, 93, 5210 CrossRef CAS.
  15. C. O. Arean, A. A. Tsyganenko, E. E. Platero, E. Garrone and A. Zecchina, Angew. Chem., Int. Ed. Engl., 1998, 37, 3161 CrossRef.
  16. J. W. Ward, J. Catal., 1967, 9, 225 CrossRef CAS.
  17. J. W. Ward and R. C. Hansford, J. Catal., 1969, 13, 364 CAS.
  18. L. M. Kustov, V. Yu. Borovkov and V. B. Kazansky, J. Catal., 1981, 72, 149 CrossRef CAS.
  19. C. H. Amberg and D. A. Sinor, Proc. Int. Congr. Catal., 3rd, 1964, ed. W. M. H. Sachtler, G. C. A. Schuit and P. Zweitering, North-Holland, Amsterdam, 1965, p. 450 Search PubMed.
  20. H. Knozinger and P. Ratnasamy, Catal. Rev. Sci. Eng., 1978, 17, 31 Search PubMed.
  21. L. E. Brus, J. Chem. Phys., 1984, 80, 4403 CrossRef CAS.
  22. L. E. Brus, J. Phys Chem., 1986, 90, 2555 CrossRef CAS.
  23. D. W. Bahnemann, C. Kormann and M. R. Hoffmann, J. Phys. Chem., 1987, 91, 3789 CrossRef CAS.
  24. J. W. Ward, J. Catal., 1968, 10, 34 CrossRef CAS.
  25. J. W. Ward, J. Phys. Chem., 1968, 72, 4211 CrossRef CAS.
  26. P. A. Jacobs, Carboniogenic Activity of Zeolites, Elsevier Sci. Pabl. Company, Amsterdam–Oxford–New York, 1977 Search PubMed.
  27. B. V. Nekrasov, Kurs Obschei Khimii (Russ.), Goskhimizdat, 1952 Search PubMed.
  28. T. Mole, J. R. Anderson and G. Creer, Appl. Catal., 1985, 17, 141 Search PubMed.
  29. A. Hagen, O. P. Keipert and F. Roessner, Stud. Surf. Sci. Catal., 1996, 101, 781 CAS.
  30. H. Berndt, V. Lietz and J. Voelter, Appl. Catal., A, 1996, 146, 365 CrossRef CAS.
  31. R. S. Kokes, Catal. Proc. Int. Congr. 5th, 1972, North-Holland/Elsevier, New York, 1973, vol. 1, p. 1 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.