Carbon oxidation at high temperature during carbothermal reduction of titanium dioxide

(Note: The full text of this document is currently only available in the PDF Version )

Alexandre Maitre and Pierre Lefort


Abstract

Carbothermal reduction of titanium dioxide is a very complex reaction. It comprises several successive or simultaneous reactions, interest being focused on the sequence:

which is itself composed of two reactions:
the first being a quasi-equilibrium which fixes the partial pressure of carbon dioxide for the second reaction, slow and kinetically limiting. The overall reaction rate is identical to that of carbon oxidation. Hence, this method allows a study of the kinetic behaviour of carbon at high temperatures (here, 1523 K) under low partial pressures of carbon dioxide (10-2–103 Pa) which are unusual conditions. The degree of conversion of carbon α vs. time t follows the kinetic law:
where the constant K determines the specific rate v of the reaction. Changes of the partial pressure of carbon dioxide, to which carbon is exposed, are obtained by imposing variable partial pressures of carbon monoxide (0–105 Pa). The resulting relationship v=f(P):
shows that the oxidation of carbon is governed by the desorption of the carbon dioxide. This work proves the feasibility of a study of the carbon oxidation at low partial pressures of CO2 and for high temperatures and casts new light on the kinetics of the carbothermal reduction of titanium dioxide.


References

  1. P. Tristant, PhD Thesis, University of Limoges, 1992.
  2. P. Tristant and P. Lefort, J. Chim. Phys., 1993, 90, 91 CAS.
  3. A. Maitre, D. Tétard and P. Lefort, J. Europ. Ceram. Soc., in the press Search PubMed.
  4. P. Tristant and P. Lefort, J. Alloys Comp., 1993, 196, 137 CAS.
  5. P. Denoirjean-Deriu, P. Tristant and P. Lefort, J. Chim. Phys., 1996, 93, 2025 CAS.
  6. M. W. Chase, C. A. Davies, J. R. Donney, D. J. Frurip, R. A. McDonald and A. N. Syverud, JANAF Thermochemical Tables, American Ceramic Society and the American Institute of Physics of the National Bureau of Standards, New York, 3rd edn., 1986 Search PubMed.
  7. A. Maitre and P. Lefort, High Temp. Mater. Processes, 1997, 1, 393 Search PubMed.
  8. P. Barret, Cinétique hétérogène, Gauthier-Villars, Paris, 1973 Search PubMed.
  9. J. Vicens and J. L. Chermant, Rev. Chim. Min., 1972, 9, 557 Search PubMed.
  10. L. K. Pivovarov, E. Y. Vrzeshch, G. S. Kreimer and F. G. Zakirov, Russ. J. Inorg. Chem., 1967, 12, 917.
  11. N. A. Ivanov, L. P. Andreeva and P. V. Gel'd, Poroshk. Metall., 1978, 8, 54 Search PubMed.
  12. E. K. Storms, The refractory carbides, Academic Press, New York and London, 1967 Search PubMed.
  13. J. Benard, Oxydation des métaux, Gauthier-Villars, Paris, 1962, vol. 1, p. 242 Search PubMed.
  14. M. Billy, in Science of Ceramics 14th, ed. D. Taylor, The Institute of Ceramics, Shelton, 1988, p. 47 Search PubMed.
  15. L. Bonnetain and G. Hoynant, Les carbones, Masson, Paris, 1965, vol. 2, p. 277 Search PubMed.
  16. J. Besson and P. Sarrazin, J. Chim. Phys., 1967, 64, 852 CAS.
  17. M. Soustelle, Modélisation macroscopique des transformations physico-chimiques, Masson, Paris, 1990 Search PubMed.
  18. J. Gadsby, J. F. Long, P. Sleigtholm and K. W. Sykes, Proc. R. Soc. London, Ser. A., 1948, 193, 357.
  19. S. Ergun, J. Phys. Chem., 1956, 60, 480 CrossRef CAS.
  20. E. T. Turkdogan and J. V. Vinters, Carbon, 1969, 7, 101 CAS.
  21. J. Gadsby, C. N. Hinshelwood and K. W. Sykes, Proc. R. Soc. London, Ser. A., 1946, 187, 129.
  22. N. M. Laurendeau, Prog. Energy Combust., 1978, 4, 221 CAS.
  23. E. T. Turkdogan and J. V. Vinters, Carbon, 1970, 8, 39 CAS.
  24. J. F. Strange and P. L. Walker, Jr., Carbon, 1976, 14, 345 CAS.
  25. A. L. Lizzio, H. Jiang and L. R. Radovic, Carbon, 1990, 28, 7 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.