Photodissociation dynamics of formyl fluoride via the triplet state surface: a direct ab-initio dynamics study

(Note: The full text of this document is currently only available in the PDF Version )

Hiroto Tachikawa


Abstract

Direct ab-initio dynamics calculations have been applied to the photodissociation of the HFCO molecule on the potential energy surface at the triplet state in order to elucidate its reaction mechanism and to determine the energy partitioning in the products. Two reaction channels, HFCO(T1)→H(2S)+FCO(X2A′) and HFCO(T1)→F(2P)+HCO(X2A′) (denoted as channels 1 and 2, respectively) were considered as decay processes of HFCO(T1). Ab-initio molecular orbital calculations showed that the activation barrier for channel 1 is significantly lower than that for channel 2 [96.2 vs. 121.3 kJ mol-1 at the MP4SDQ/6-311++G(2d,p)//MP4SDQ/6-311G(d,p) level of theory]. Direct ab-initio dynamics calculations, carried out at the HF/6-311G(d,p) level, suggested that almost all the available energy is partitioned into the relative translational modes between fragments in channel 1, whereas 60% of the total available energy is partitioned into the internal and rotational modes of the HCO fragment in channel 2. In addition, rotational excitation of the a-axis of the FCO fragment is found in channel 1. The mechanisms of the dissociation reactions are discussed on the basis of the results.


References

  1. T. J. Wallington, M. D. Hurley, J. C. Ball and E. W. Kaiser, Environ. Sci. Technol., 1992, 26, 1318 CAS.
  2. A. R. Ravishankara, A. A. Trunipseed, N. R. Jensen, S. Barrone, M. Mills, C. J. Howard and S. Solomon, Science, 1994, 263, 71 CAS.
  3. T. J. Wallington, W. F. Schneider, J. Sehested and O. J. Neilsen, Faraday Discuss. Chem. Soc., 1995, 100, 55 RSC.
  4. S. Pinnock, K. P. Shine, T. J. Smyth, M. D. Hurley and T. J. Wallington, J. Geophys. Res., 1995, 100, 2327.
  5. T. W. R. Hancock and R. N. Dixon, J. Chem. Soc., Faraday Trans., 1997, 93, 2707 RSC.
  6. C. L. Reed, M. Kono, S. R. Langford, R. N. Dixon and M. N. R. Ashfold, J. Chem. Soc., Faraday Trans., 1997, 93, 2721 RSC.
  7. C. L. Reed, M. Kono, S. R. Langford, T. W. R. Hancock, R. N. Dixon and M. N. R. Ashfold, J. Chem. Phys., 1997, 106, 6198 CrossRef CAS.
  8. C. Maul, C. Dietrich, T. Haas, K.-H. Gericke, H. Tachikawa, S. R. Langford, M. Kono, C. L. Reed, R. N. Dixon and M. N. R. Ashfold, Phys. Chem. Chem. Phys., 1999, 1, 767 RSC.
  9. Y. S. Choi and C. B. Moore, J. Chem. Phys., 1991, 94, 5414 CrossRef CAS.
  10. Y. S. Choi and C. B. Moore, J. Chem. Phys., 1995, 103, 9981 CrossRef CAS.
  11. D. E. Klimek and M. J. Berry, Chem. Phys. Lett., 1973, 20, 141 CrossRef CAS.
  12. B. R. Weiner and R. N. Rosenfeld, J. Phys. Chem., 1988, 92, 4640 CrossRef CAS.
  13. R. Sumathi and A. K. Chandra, Chem. Phys., 1992, 165, 257 CrossRef CAS.
  14. H. Tachikawa, J. Phys. Chem. A, 1997, 101, 7475; H. Tachikawa, J. Phys. Chem. A, 1998, 102, 7065 CrossRef CAS; J. Phys. Chem. A, 1998, 102, 8648 Search PubMed; H. Tachikawa and M. Igarashi, J. Phys. Chem., 1996, 100, 17090 Search PubMed Program code of the direct ab-initio dynamics calculation was created by our group.
  15. H. Tachikawa, J. Chem. Phys., 1998, 108, 3966 CrossRef CAS; J. Phys. Chem., 1995, 99, 225 Search PubMed.
  16. Ab-initio MO calculation program: M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian 94, Gaussian Inc., Pittsburgh, PA, 1995.
Click here to see how this site uses Cookies. View our privacy policy here.