The influence of dissolved gas on the interactions between surfaces of different hydrophobicity in aqueous media Part II. A spectroscopic study

(Note: The full text of this document is currently only available in the PDF Version )

Wenqi Gong, Joanne Stearnes, Daniel Fornasiero, Robert A. Hayes and John Ralston


Abstract

The aggregation of smooth hydrophobic and hydrophilic silica particles in the presence of different gases has been investigated at pH 5.6 and 10-4 M KNO3, using the attenuated total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR) technique. The rate of aggregation of methylated silica is enhanced in the presence of dissolved CO2 but is unaffected by dissolved air, argon or nitrogen. The aggregation of hydrophilic and heat treated dehydroxylated silica is not influenced by any gas tested. For methylated silica, CO2 adsorbs on to the surface as tiny microbubbles. These microbubbles decrease the colloid stability of the methylated silica particles, overcoming the electrostatic repulsion at pH 5.6 and 10-4 M KNO3. The results obtained are in broad agreement with our previous atomic force microscopy (AFM) investigation of interparticle forces and bubble–particle heterocoagulation studies.


References

  1. J. N. Israelachvili and R. Pashley, Nature (London), 1982, 300, 301 CrossRef .
  2. K. L. Sutherland and I. Wark, Principles of Flotation, Australasian Institute of Mining and Metallurgy, Melbourne, Australia, 1955 Search PubMed .
  3. T. D. Blake and J. A. Kitchener, J. Chem. Soc., Faraday Trans. 1, 1972, 68, 1435 RSC .
  4. J. Wood and R. Sharma, Langmuir, 1995, 11, 4797 CrossRef CAS .
  5. N. F. Bunkin, O. A. Kiseleva, A. V. Lobeyev, T. G. Movchan, B. W. Ninham and O. I. Vinogradova, Langmuir, 1997, 13, 3024 CrossRef CAS .
  6. J. R. Grigera, S. G. Kalko and J. Fischburg, Langmuir, 1996, 12, 154 CrossRef CAS .
  7. E. N. Harvey, D. K. Barnes, W. D. McElroy, A. H. Whiteley, D. C. Pease and K. W. Cooper, J. Cell. Comp. Physiol., 1944, 24, 1 Search PubMed .
  8. E. N. Harvey, A. H. Whiteley, W. D. McElroy, D. C. Pease and D. K. Barnes, J. Cell. Comp. Physiol., 1994, 24, 23 Search PubMed .
  9. E. N. Harvey, D. K. Barnes, W. D. McElroy, A. H. Whiteley and D. C. Pease, J. Am. Chem. Soc., 1945, 67, 156 CrossRef CAS .
  10. E. N. Harvey, W. D. McElroy and A. H. Whiteley, J. Appl. Phys., 1947, 18, 162 CAS .
  11. S. D. Lubetkin, J. Chem. Soc., Faraday Trans. 1, 1989, 85, 1753 RSC .
  12. S. D. Lubetkin, in Controlled Particle, Droplet and Bubble Formation, ed. D. J. Wedlock, Butterworth–Heinemann, 1994, ch. 6 Search PubMed .
  13. M. R. Urban, PhD Thesis, University of London, 1978 .
  14. V. I. Klassen and V. A. Mokrousov, An Introduction to the Theory of Flotation, translated by J. Leja and G. W. Poling, Butterworths, London, 1983 Search PubMed .
  15. S. Wrobel, Mine Quarry Eng., 1952, 313 Search PubMed .
  16. S. Ljunggren and J. C. Eriksson, Colloids Surf. A, 1997, 129–130, 151 CrossRef .
  17. W. L. Ryan and E. A. Hemmingsen, J. Colloid Interface Sci., 1998, 197, 101 CrossRef CAS .
  18. Z. Dai, D. Fornasiero and J. Ralston, J. Chem. Soc., Faraday Trans. 1, 1998, 94, 1983 Search PubMed .
  19. J. Mahnke, J. Stearnes, R. A. Hayes, D. Fornasiero and J. Ralston, Phys. Chem. Chem. Phys., 1999, 1, 2793 RSC .
  20. P. G. Blake and J. Ralston, Colloids Surf., 1985, 15, 101 CrossRef CAS .
  21. D. Diggins, L. G. J. Fokkink and J. Ralston, Colloids Surf., 1990, 44, 299 CrossRef CAS .
  22. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, Wiley Interscience, New York, 1986, ch. 5 Search PubMed .
  23. E. F. H. Brittain, W. O. George and C. H. J. Wells, Introduction to Molecular Spectroscopy, Academic Press, London, 1970, ch. 3 Search PubMed .
  24. P. Attard, Langmuir, 1996, 12, 1693 CrossRef CAS .
  25. S. Biggs and F. Grieser, J. Colloid Interface Sci., 1994, 165, 425 CrossRef CAS .
Click here to see how this site uses Cookies. View our privacy policy here.