The mean spherical approximation methodology applied to the acid–base equilibria of glycine in artificial seawater

(Note: The full text of this document is currently only available in the PDF Version )

Teresa Vilariño and Manuel E. Sastre de Vicente


Abstract

We present results obtained by use of a statistical mechanics approximation based on integral equations, the mean spherical approximation, to predict equilibrium constants for glycine in artificial seawater and to illustrate the effect of the ionic medium. A relationship between the dissociation constants of glycine and the molar concentration of the seawater solution is derived in the range of salinities varying from 0.5 to 4%. The MSA is a simple analytical theory for electrolytes that is very useful in representing the thermodynamic properties of ionic solutions over a wide range of concentrations in terms of one simple parameter, Γ, and the charges, diameters, and concentrations of the ions. A concentration dependent dielectric constant rather than the pure solvent permittivity together with the concentration-dependent diameters of the cations are incorporated in the calculations. This is a way of including the effect of soft repulsions and attractions and the effect of solvation. In calculations, an optimized diameters for the protonated glycine ion and the proton, both of which are involved both in the equilibria of glycine, have been obtained.


References

  1. M. G. Blackburn, T. H. Lilley and E. Walmsley, J. Chem. Soc., Faraday Trans. 1, 1982, 78, 1641 RSC.
  2. E. M. Thurman, Organic Geochemistry of Natural WatersM. Nijhoff and W. Junk, Dordrecht, The Netherlands, 1985, pp. 151–180 Search PubMed.
  3. F. J. Millero and M. L. Sohn, Chemical Oceanography, CRC Press, Boca Raton, FL, 1992, pp. 353–414 Search PubMed.
  4. F. M. M. Morel and J. G. Hering, Principles and Applications of Aquatic Chemistry, Wiley, New York, 1993, pp. 319–420 Search PubMed.
  5. M. E. Sastre de Vicente, Curr Topics in Solution Chem., 1997, 2, 157 Search PubMed.
  6. T. Kiss, I. Sovago and A. Gergely, Pure Appl. Chem., 1991, 63, 597.
  7. I. Sóvágó, T. Kiss and A. Gergely, Pure Appl. Chem., 1993, 65, 1029 CAS.
  8. G. Berthon, Pure Appl. Chem., 1995, 67, 1117 CAS.
  9. K. S. Pitzer, Activity Coefficients in Electrolyte Solutions, ed. K. S. Pitzer, CRC Press, Boca Raton, FL, 2nd edn., 1991, pp. 75–153 Search PubMed.
  10. S. Fiol, I. Brandariz and M. E. Sastre de Vicente, Mar. Chem., 1995, 40, 215 CrossRef CAS.
  11. L. Blum, Mol. Phys., 1975, 30, 1529 CAS.
  12. H. L. Friedman, A Course in Statistical Mechanics, Prentice Hall, Englewood Cliffs, NJ, 1985, pp. 137–156 Search PubMed.
  13. T. Vilariño and M. E. Sastre de Vicente, J. Phys. Chem., 1996, 100, 16378 CrossRef CAS.
  14. T. Vilariño, I. Brandariz, S. Fiol, X. L. Armesto and M. E. Sastre de Vicente, J. Chem. Soc., Faraday Trans. 2, 1997, 93, 413 Search PubMed.
  15. M. E. Sastre de Vicente, T. Vilariño and I. Brandariz, Recent Res. Develop. Phys. Chem., 1998, 2, 489 Search PubMed.
  16. R. Triolo, J. R. Grigera and L. Blum, J. Phys. Chem., 1976, 80, 1858 CrossRef CAS.
  17. L. Blum and J. S. Høye, J. Phys. Chem., 1977, 81, 1311 CrossRef CAS.
  18. C. Sanchez-Castro and L. Blum, J. Phys. Chem., 1989, 93, 7478 CrossRef CAS.
  19. E. Waisman and J. L. Lebowitz, J. Chem. Phys., 1972, 56, 3086 and 3093 CAS.
  20. P. Turq, J. Barthel and M. Chemla, Transport, Relaxation and Kinetic Processes in Electrolyte Solutions, Lectures Notes in Chemistry, vol. 57, Springer-Verlag, Berlin, 1992, pp. 74–109 Search PubMed.
  21. R. Triolo, L. Blum and M. A. Floriano, J. Phys. Chem., 1978, 82, 1368 CrossRef CAS.
  22. R. Triolo, L. Blum and M. A. Floriano, J. Chem. Phys., 1977, 67, 5956 CrossRef CAS.
  23. J.-P. Simonin, J. Phys. Chem. B, 1997, 101, 4313 CrossRef CAS.
  24. J.-P. Simonin, L. Blum and P. Turq, J. Phys. Chem. B, 1996, 100, 7704 Search PubMed.
  25. F. J. Millero, Mar. Chem., 1990, 30, 205 CAS.
  26. F. J. Millero, Limnol. Oceanogr., 1986, 31, 839 Search PubMed.
  27. F. Macintyre, Mar. Chem., 1976, 4, 205 CAS.
  28. S. L. Clegg and M. Whitfield, Activity Coefficients in Electrolyte Solutions, ed. K. S. Pitzer, CRC Press, Boca Raton, FL, 1991, pp. 279–434 Search PubMed.
  29. W. R. Fawcett and A. C. Tikanen, J. Phys. Chem., 1996, 100, 4251 CrossRef CAS.
  30. M. Whitfield and D. R. Turner, Marine Chemistry. A Practical Introduction, ed. M. Whitfield and D. R. Turner, Wiley, Rochester, 1981, pp. 3–66 Search PubMed.
  31. T. Sun, J. L. Lénard and A. S. Teja, J. Phys. Chem., 1994, 98, 6870 CrossRef CAS.
  32. J. Kielland, J. Am. Chem. Soc., 1937, 59, 1675 CrossRef CAS.
  33. H. L. Friedman, J. Solution Chem., 1972, 1, 387, 413 and 419.
  34. J.-P. Simonin, J. Chem. Soc., Faraday Trans., 1996, 92, 3519 RSC.
  35. J.-P. Simonin and L. Blum, J. Chem. Soc., Faraday Trans., 1996, 92, 1533 RSC.
  36. B. P. Kelley and T. H. Lilley, J. Chem. Soc., Faraday Trans. 1, 1978, 74, 2771 RSC.
  37. T. Cartallier, P. Turq, L. Blum and N. Condamine, J. Phys. Chem., 1992, 96, 6766 CrossRef.
  38. D. R. Turner and M. Whitfield, Geochem. Cosmochim. Acta, 1987, 51, 3231 CAS.
  39. K. S. Pitzer, J. Phys. Chem., 1973, 77, 268 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.