Poly(dimethylsiloxane) crosslinked in different conditions Part I. Sorption properties in water–ethyl acetate mixtures

(Note: The full text of this document is currently only available in the PDF Version )

Quang Trong Nguyen, Zebida Bendjama, Robert Cle′ment and Zhenghua Ping


Abstract

Poly(dimethylsiloxane)s (PDMS) of different crosslinking degrees were synthesized by varying the ratio of B(crosslinker)/A(vinyl-type PDMS) in the mixture to be crosslinked, and by varying the crosslinking temperature. The swelling degrees of the polymer in pure water, pure ester (ethyl acetate) and their mixture decrease when the B/A component ratio or the crosslinking temperature increases. The ester component is selectively sorbed from its mixture with water (the sorption extent is two orders of magnitude higher for the ester than for water). The sorption selectivity increases with the B/A component ratio and the crosslinking temperature. We attributed these changes in properties to a change in the degree of crosslinking in the network, which increases with the B/A component ratio or the crosslinking temperature. The ester sorption in PDMS from the water–ester mixture (ternary system) can be correctly described by the Flory model for the pseudo-binary mixture (ester–PDMS). The value of the Flory interaction parameter increases with the B/A component ratio. The water sorption from water–ester mixtures cannot be described using the same approach.


References

  1. P. Côté and C. Lipski, in Proceedings of 3rd International Conference on Pervaporation Processes in the Chemical Industry, ed. R. Bakish, Bakish Materials Corp., Englewood, NJ, 1988, p. 449 Search PubMed.
  2. Q. T. Nguyen and K. Nobe, J. Membrane Sci., 1987, 30, 11 Search PubMed.
  3. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, 1953, p. 576 Search PubMed.
  4. R. C. Reid, J. M. Prausnitz and T. K. Sherwood, in The properties of gas and liquids, McGraw-Hill, New York, 1977, p. 301 Search PubMed.
  5. S. M. Walas, in Phase Equilibria in Chemical Engineering, Butterworth, New York, 1985, p. 201 Search PubMed.
  6. J. Gmehling and U. Onken, in Vapor–liquid equilibrium. Aqueous organic systems, Data Collection, ed. D. Behrens and R. Eckermann, C. Dechema, Frankfurt am Main, vol. 1, part 1, 1985, p. 391 Search PubMed.
  7. E. Favre, R. Clément, Q. T. Nguyen, P. Schaetzel and J. Néel, J. Chem. Soc., Faraday Trans., 1993, 89, 4347 RSC.
  8. A. Singh, B. D. Freeman and I. Pinnau, J. Polym. Sci., Polym. Phys., 1998, 36, 289 CrossRef CAS.
  9. H. Nijhuis, PhD Thesis, Twente University, Enschede, 1990.
  10. L. Hauser, C. A. Hauser and F. L. Kilbourne, Ind. Eng. Chem., 1956, 48(7), 1202 CrossRef.
  11. J. Brandrup and E. H. Immergut, in Polymer Handbook, John Wiley & Sons, Inc., New York, 3rd edn., 1989 Search PubMed.
  12. P. J. Flory and J. Rehner, J. Chem. Phys., 1943, 11, 521 CrossRef CAS.
  13. M. H. V. Mulder, A. C. M. Franken and C. A. Smolders, J. Membrane Sci., 1985, 23, 41 Search PubMed.
  14. Q. T. Nguyen, E. Favre, Z. H. Ping and J. Néel, J. Membrane Sci., 1996, 113, 137 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.