Equilibrium phase behaviour and emulsion stability in silicone oil+water+AOT mixtures

(Note: The full text of this document is currently only available in the PDF Version )

Bernard P. Binks, Jinfeng Dong and Natasa Rebolj


Abstract

We have investigated the equilibrium phase behaviour and the emulsion stability in mixtures of aqueous NaCl, anionic surfactant AOT and polydimethylsiloxane (PDMS) oils. For hexamethyldisiloxane, the transition of Winsor systems from I–III–II is effected by increasing the electrolyte concentration. Aggregated surfactant transfers from water to oil via a third phase, the composition of which resembles that of the L3 phase. The PDMS/water interfacial tension passes through a low minimum around conditions of three phase formation. In single phase microemulsions, we have determined the uptake of silicone oil into aqueous surfactant solutions and the solubilisation of water into surfactant solutions in oil, both as a function of salt concentration and temperature. Maximum uptake of oil (water) occurs at a salt concentration equal to that at the Winsor I/III (III/II) boundary. The partitioning of salt between dispersed and excess water phases is in favour of the latter for small drops but becomes more nearly equal for larger drops. Macroemulsions prepared from the equilibrium coexisting phases invert from oil-in-water (o/w) to water-in-oil (w/o) at intermediate salt concentrations. For o/w emulsions, the stability to both creaming and coalescence falls markedly approaching the Winsor I/III transition. An argument based on the influence of the interfacial tension on the deformability of the drops is consistent with the findings. For w/o emulsions, the stability to both sedimentation and coalescence increases close to the boundary where three phases form. Three phase emulsions are extremely unstable. In systems containing PDMS oils of higher molecular weight, inversion of equilibrium systems from water to oil continuous occurs at higher salt concentrations. Both the width of the three phase region and the minimum interfacial tension increase with oil molecular weight. Emulsion inversion takes place over virtually the same range of salt concentration as that for which three phases are formed.


References

  1. A. C. John, H. Uchiyama, K. Nakamura and H. Kunieda, J. Colloid Interface Sci., 1997, 186, 294 CrossRef CAS.
  2. R. P. Gee, Colloids Surf. A, 1998, 137, 91 CrossRef CAS.
  3. D. C. Steytler, P. J. Dowding, B. H. Robinson, J. D. Hague, J. H. S. Rennie, C. A. Leng, J. Eastoe and R. K. Heenan, Langmuir, 1998, 14, 3517 CrossRef CAS.
  4. B. P. Binks and J. Dong, Colloids Surf. A, 1998, 132, 289 CrossRef CAS.
  5. B. P. Binks and J. Dong, J. Chem. Soc., Faraday Trans., 1998, 94, 401 RSC.
  6. V. W. Reid, G. F. Longman and E. Heinerth, Tenside, 1967, 4, 292 Search PubMed.
  7. B. Vonnegut, Rev. Sci. Instrum., 1942, 13, 6.
  8. M. C. Wilkinson, J. Colloid Interface Sci., 1972, 40, 14 CAS.
  9. R. Aveyard, B. P. Binks, S. Clark and J. Mead, J. Chem. Soc., Faraday Trans. 1, 1986, 82, 125 RSC.
  10. H. Kellay, B. P. Binks, Y. Hendrikx, L. T. Lee and J. Meunier, Adv. Colloid Interface Sci., 1994, 49, 85 CrossRef CAS.
  11. R. Aveyard, B. P. Binks and P. D. I. Fletcher, in The Structure, Dynamics and Equilibrium Properties of Colloidal Systems, ed. D. M. Bloor and E. Wyn-Jones, Kluwer, AmsterdamL, 1990, p. 557 Search PubMed.
  12. B. P. Binks, H. Kellay and J. Meunier, Europhys. Lett., 1991, 16, 53 Search PubMed.
  13. H. Kellay, Y. Hendrikx, J. Meunier, B. P. Binks and L. T. Lee, J. Phys. II France, 1993, 3, 1747 Search PubMed.
  14. D. G. Hall, in Aggregation Processes in Solution, ed. E. Wyn-Jones and J. Gormally, Elsevier, Amsterdam, 1983, p. 7 Search PubMed.
  15. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworths, London, 1959 Search PubMed.
  16. R. Palepu, D. G. Hall and E. Wyn-Jones, J. Chem. Soc., Faraday Trans., 1990, 86, 1535 RSC.
  17. R. Aveyard, B. P. Binks, T. A. Lawless and J. Mead, Can. J. Chem., 1988, 66, 3031 CAS.
  18. R. Aveyard, B. P. Binks and J. Mead, J. Chem. Soc., Faraday Trans. 1, 1986, 82, 1755 RSC.
  19. R. Aveyard, B. P. Binks, S. Clark and P. D. I. Fletcher, J. Chem. Tech. Biotechnol., 1990, 48, 161 CAS.
  20. O. Ghosh and C. A. Miller, J. Phys. Chem., 1987, 91, 4528 CrossRef CAS.
  21. R. Aveyard, B. P. Binks, P. D. I. Fletcher, C. E. Rutherford, P. J. Dowding and B. Vincent, Phys. Chem. Chem. Phys., 1999, 1, 1971 RSC.
  22. M.-J. Hou and D. O. Shah, Langmuir, 1987, 3, 1086 CrossRef CAS.
  23. A. Derouiche and C. Tondre, J. Dispersion Sci. Technol., 1991, 12, 517 Search PubMed.
  24. M. Kotlarchyk, S.-H. Chen, J. S. Huang and M. W. Kim, Phys. Rev. A, 1984, 29, 2054 CrossRef CAS.
  25. P. D. I. Fletcher, J. Chem. Soc., Faraday Trans. 1, 1986, 82, 2651 RSC.
  26. S. G. Frank and G. Zografi, J. Colloid Interface Sci., 1969, 29, 27 CAS.
  27. B. P. Binks, in Modern Aspects of Emulsion Science, ed. B. P. Binks, The Royal Society of Chemistry, Cambridge, 1998, pp. 1–55 Search PubMed.
  28. B. P. Binks, Colloids Surf. A, 1993, 71, 167 CrossRef CAS.
  29. B. P. Binks, Langmuir, 1993, 9, 25 CrossRef CAS.
  30. R. Aveyard, B. P. Binks, P. D. I. Fletcher, X. Ye and J. R. Lu, in Emulsions—A Fundamental and Practical Approach, ed. J. Sjöblom, Kluwer, Amsterdam, 1992, p. 97 Search PubMed.
  31. D. N. Petsev, N. D. Denkov and P. A. Kralchevsky, J. Colloid Interface Sci., 1995, 176, 201 CrossRef CAS.
  32. A. Kabalnov and H. Wennerström, Langmuir, 1996, 12, 276 CrossRef CAS.
  33. L. M. Baldauf, R. S. Schechter, W. H. Wade and A. Graciaa, J. Colloid Interface Sci., 1982, 85, 187 CAS.
  34. R. E. Anton and J.-L. Salager, J. Colloid Interface Sci., 1986, 111, 54 CAS.
  35. K. D. Danov, D. N. Petsev, N. D. Denkov and R. Borwankar, J. Chem. Phys., 1993, 99, 7179 CrossRef CAS.
  36. Calculations using experimental values of γ, a, ψo for heptane-in-water emulsions stabilised by AOT. B. P. Binks, W.-G. Cho and D. N. Petsev, unpublished results.
Click here to see how this site uses Cookies. View our privacy policy here.