Dissociation of AOT monolayers stabilising oil-in-water microemulsions in Winsor I systems

(Note: The full text of this document is currently only available in the PDF Version )

R Aveyard, B P. Binks, P D. I. Fletcher, C E. Rutherford, P J. Dowding and B Vincent


Abstract

We have investigated the dissociation of AOT monolayers stabilising oil-in-water microemulsion drops in Winsor I systems where the drops are in equilibrium with an excess oil phase and the monolayers have their preferred curvature. For planar monolayers, we derive a relationship between the degree of dissociation definedin terms of the negative adsorption of the co-ions, α1p, and that defined in terms of "‘free’' and "‘bound’' counterions, α2p. For typical values of the surface potential, α2p is commonly 5–10 times larger than α1p. We describe the estimation of the degree of dissociation of microemulsion droplets from conductivity, emf and electrophoretic mobility measurements. With increasing concentration of either NaCl or AOT, the degree of dissociation decreases as phase inversion is approached when the preferred monolayer curvature becomes close to zero. For different oils, the NaCl concentration dependence of the degree of dissociation shows a clear correlation with that required for phase inversion. For the conductivity results, effects due to obstruction of small ions by the microemulsion drops and changes in drop mobility with drop volume fraction are discussed.


References

  1. R. Aveyard, B. P. Binks, S. Clark and J. Mead, J. Chem. Soc., Faraday Trans. 1, 1986, 82, 125 RSC.
  2. R. Aveyard, B. P. Binks and J. Mead, J. Chem. Soc., Faraday Trans. 1, 1986, 82, 1755 RSC.
  3. O. Ghosh and C. A. Miller, J. Phys. Chem., 1987, 91, 4528 CrossRef CAS.
  4. J. F. Miller, K. Schätzel and B. Vincent, J. Colloid Interface Sci., 1991, 143, 532 CAS.
  5. R. Aveyard, B. P. Binks and J. Mead, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 2169 RSC.
  6. D. G. Hall, in Aggregation Processes in Solution, ed. E. Wyn-Jones and J. Gormally, Elsevier, Amsterdam, 1983, ch. 2 Search PubMed.
  7. L. Shedlovsky, C. W. Jakob and M. B. Epstein, J. Phys. Chem., 1963, 67, 2075 CAS.
  8. S. G. Cutler, P. Meares and D. G. Hall, J. Chem. Soc., Faraday Trans. 1, 1978, 74, 1958 Search PubMed.
  9. R. Zana, J. Colloid Interface Sci., 1980, 78, 330 CrossRef CAS.
  10. S. Backlund and K. Rundt, Acta Chim. Scand. A, 1980, 34, 433 Search PubMed.
  11. J. E. Newbery, J. Colloid Interface Sci., 1980, 81, 483 CrossRef.
  12. M. Koshinuma, Bull. Chem. Soc. Jpn., 1981, 54, 3128 CAS.
  13. T. Maeda and I. Satake, Bull. Chem. Soc. Jpn., 1984, 57, 2396 CAS.
  14. E. B. Abuin, E. A. Lissi, R. Nunez and A. Olea, Langmuir, 1989, 5, 753 CrossRef CAS.
  15. R. Palepu, D. G. Hall and E. Wyn-Jones, J. Chem. Soc., Faraday Trans. 1, 1990, 86, 1535 Search PubMed.
  16. H. Gharibi, N. Takasawa, P. Brown, M. A. Thomason, D. M. Painter, D. M. Bloor, D. G. Hall and E. Wyn-Jones, J. Chem. Soc., Faraday Trans., 1991, 87, 707 RSC.
  17. W. A. Wanbadhi, R. Palepu, D. M. Bloor, D. G. Hall and E. Wyn-Jones, J. Phys. Chem., 1991, 95, 6642 CrossRef CAS.
  18. B. D. Powell and A. E. Alexander, Can. J. Chem., 1952, 30, 1042.
  19. P. Mukerjee, K. Mysels and P. Kapauan, J. Phys. Chem., 1967, 71, 4166 CrossRef CAS.
  20. J. Frahm, S. Diekman and A. Haase, J. Phys. Chem., 1980, 84, 566 CAS.
  21. P. C. Shanks and E. I. Franses, J. Phys. Chem., 1992, 96, 1794 CrossRef CAS.
  22. L. Princen and K. Mysels, J. Colloid Interface Sci., 1957, 12, 594 CAS.
  23. P. T. Jacobs and E. Anacker, J. Colloid Interface Sci., 1973, 43, 105 CAS.
  24. See, for example, R. J. Hunter, Foundations of Colloid Science, Oxford University Press, Oxford, 1986, ch. 6 Search PubMed.
  25. P. D. I. Fletcher, J. Chem. Soc., Faraday Trans. 1, 1987, 83, 1493 RSC.
  26. P. D. I. Fletcher and J. F. Holzwarth, J. Phys. Chem., 1991, 95, 2550 CrossRef CAS.
  27. U. Olsson and P. Schurtenberger, Langmuir, 1993, 9, 3389 CrossRef CAS.
  28. J. S. Morris, PhD Thesis, University of Hull, 1995.
  29. G. M. Bell, Trans. Faraday Soc., 1965, 60, 1752 Search PubMed.
  30. P. G. Nilsson and B. Lindman, J. Phys. Chem., 1983, 87, 4756 CrossRef.
  31. B. Johnson, H. Wennerstrom, P. G. Nilsson and P. Linse, Colloid Polym. Sci., 1986, 264, 77.
  32. R. Aveyard, B. P. Binks and P. D. I. Fletcher, Langmuir, 1989, 5, 1210 CrossRef.
  33. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworths Scientific Publications, London, 1955 Search PubMed.
  34. See, for example, P. W. Atkins, Physical Chemistry, Oxford University Press, Oxford, 5th edn., 1994, ch. 24 Search PubMed.
  35. R. M. Pashley and B. W. Ninham, J. Phys. Chem., 1987, 91, 2902 CrossRef CAS.
  36. P. Richetti and P. Kekicheff, Phys. Rev. Lett., 1992, 68, 1951 CrossRef.
  37. J. L. Parker, P. Kekicheff, P. Richetti and S. Sarman, Phys. Rev. Lett., 1992, 68, 162 CrossRef.
  38. D. Guest and D. Langevin, J. Colloid Interface Sci., 1986, 112, 208 CAS.
  39. See, for example, W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions, Cambridge University Press, Cambridge, 1989, p. 449 Search PubMed.
  40. R. Aveyard, B. P. Pinks, J. Mead and J. H. Clint, J. Chem. Soc., Faraday Trans. 1, 1988, 84, 675 RSC.
  41. Values of χ of 50–70 were measured for a charged, globular polymer in the absence of added salt. B. P. Binks, S. Clark and P. D. I. Fletcher, University of Hull, unpublished results.
  42. See, for example, D. J. G. Ives and G. J. Janz, Reference Electrodes, Academic Press, New York, 1961, p. 54 Search PubMed.
  43. R. W. O'Brien and L. R. White, J. Chem. Soc., Faraday Trans. II, 1978, 74, 1607 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.