Mapping of reaction pathways by structure correlation methods. A study of the ligand dissociation reaction in quasi-octahedral Re(V) and Tc(V) oxo-complexes.

(Note: The full text of this document is currently only available in the PDF Version )

Valeria Ferretti, Valerio Bertolasi, Paola Gilli and Gastone Gilli


Abstract

Intercorrelations among geometrical parameters of a molecular fragment as found in different crystal structures are called structure correlations. Such correlations are believed to represent possible reaction pathways mapping the course of chemical reactions. Pyramidal Oâ–·ML4 oxo-complexes [M[double bond, length as m-dash]Re(V) and Tc(V)] react easily with oxygenated ligands of different basicities (H2O, RO-, ArO-, RCOO-etc.) to give quasi-octahedral Oâ–·ML4OR addition compounds which are often observed in the crystalline state and a relatively large number of structural and spectroscopic data on such complexes are available. Coordination changes from square-pyramidal to quasi-octahedral caused by the approach of the sixth ligand are found to induce systematic variations in the polyhedron geometry which are found to correlate with IR ν(Mâ–·O) stretching frequencies and pKa values of the entering ligands. According to structure correlation methods, each fragment geometry was assumed to represent a point along a single reaction pathway of the dissociation reaction Oâ–·ML4–OR→Oâ–·ML4+OR of the complex associating rather similar Oâ–·ML4 acceptors with a series of OR ligands having quite different donor properties. Assuming that the ligand pKa (or related ΔG°) values can be considered as a measure of the relative thermodynamic stabilities of the complexes, a mathematical model of the reaction pathway is proposed which, on the grounds of the Marcus rate-equilibrium theory, relates activation free energies, thermodynamic stabilities, and geometrical distances from the reaction transition state. The reliability of the model is tested, aposteriori, against experimental values of energies, bond distances and quadratic vibrational force constants.


References

  1. H. A. Bent, Chem. Rev., 1968, 68, 587 CrossRef CAS.
  2. (a) H.-B. Bürgi, Inorg. Chem., 1973, 12, 2321 CrossRef; (b) H.-B. Bürgi, Angew. Chem. Int. Ed. Eng., 1975, 14, 460 CrossRef; (c) H.-B. Bürgi and J. D. Dunitz, Acc. Chem. Res., 1983, 16, 153 CrossRef; (d) J. D. Dunitz, X-Ray Analysis and the Structure of Organic Molecules, Cornell University Press, Ithaca, NY, 1979 Search PubMed; (e) P. Murray-Rust, H.-B. Bürgi and J. D. Dunitz, J. Am. Chem. Soc., 1975, 97, 921 CrossRef CAS; (f) H.-B. Bürgi, J. D. Dunitz and E. Shefter, J. Am. Chem. Soc., 1973, 95, 5065 CrossRef CAS; (g) H.-B. Bürgi, J. D. Dunitz and E. Shefter, Acta Crystallogr., 1974, B30, 1517.
  3. (a) Structure Correlations, ed. H.-B. Bürgi and J. D. Dunitz, VCH, Weinheim Germany, 1994 Search PubMed; (b) V. Ferretti, P. Gilli, V. Bertolasi and G. Gilli, Crystallography Rev., 1996, 5, 3 Search PubMed.
  4. (a) M. G. Evans and M. Polanyi, Trans. Faraday Soc., 1938, 34, 11 RSC; (b) R. P. Bell, Proc. R. Soc. London Ser. A, 1936, 154, 414.
  5. G. S. Hammond, J. Am. Chem. Soc., 1955, 77, 334–338 CrossRef CAS.
  6. (a) R. A. Marcus, J. Chem. Phys., 1956, 24, 966 CrossRef CAS; (b) R. A. Marcus, Discuss. Faraday Soc., 1960, 29, 21 RSC; (c) R. A. Marcus, J. Phys. Chem., 1968, 72, 891 CrossRef CAS; (d) R. A. More O'Ferral, J. Chem. Soc. B, 1970, 274 RSC; (e) J. R. Murdoch, J. Am. Chem. Soc., 1983, 105, 2667 CrossRef CAS; (f) E. Grunwald, J. Am. Chem. Soc., 1985, 107, 125 CrossRef CAS.
  7. H.-B. Bürgi, in Perspectives in Coordination Chemistry, ed. A. F. Williams, C. Floriani and A. E. Merbach, VCH, Basel, 1992, pp. 1–29 Search PubMed.
  8. S. S. Shaik, H. B. Schlegel and S. Wolfe, Theoretical Aspects of Physical Organic Chemistry. The SN2 Mechanism, John Wiley and Sons, New York, 1992 Search PubMed.
  9. (a) H.-B. Bürgi and K. C. Dubler-Steudle, J. Am. Chem. Soc., 1988, 110, 4953 CrossRef; (b) H.-B. Bürgi and K. C. Dubler-Steudle, J. Am. Chem. Soc., 1988, 110, 7291 CrossRef; (c) P. G. Jones and A. J. Kirby, J. Am. Chem. Soc., 1984, 106, 6207 CrossRef CAS; (d) M. R. Edwards, P. G. Jones and A. J. Kirby, J. Am. Chem. Soc., 1986, 108, 7067 CrossRef CAS.
  10. E. Deutsch, K. Libson, S. Jurisson and L. F. Lindoy, Prog. Inorg. Chem., 1983, 30, 75 CAS.
  11. (a) W. P. Griffith, Coord. Chem. Rev., 1972, 8, 369 CrossRef CAS; (b) E. M. Shustorovich, M. A. Porai-Koshits and Yu. A. Buslaev, Coord. Chem. Rev., 1975, 17, 1 CrossRef CAS.
  12. (a) D. D. Perrin, Pure and Appl. Chem., 1969, 20, 133; (b) J. March, Advanced Organic Chemistry, 4th edn., J. Wiley and Sons, New York, 1992, p. 250 Search PubMed; (c) K. P. C. Vollhardt, Organic Chemistry, W. H. Freeman and Company, New York, 1987, p. 739 Search PubMed.
  13. (a) A. Roodt, J. G. Leipoldt, E. A. Deutsch and J. C. Sullivan, Inorg. Chem., 1992, 31, 1080 CrossRef CAS; (b) J. G. Leipoldt, S. S. Basson, A. Roodt and W. Purcell, Polyhedron, 1992, 11, 2277 CrossRef CAS and references therein; (c) A. Roodt, J. G. Leipoldt, L. Helm, A. Abou-Hamdan and A. E. Merbach, Inorg. Chem., 1995, 34, 560 CrossRef CAS.
  14. F. H. Allen, S. Bellard, M. D. Brice, B. A. Cartwright, A. Doubleday, H. Higgs, T. Hummelink, B. G. Hummelink-Peters, O. Kennard, W. D. S. Motherwell, J. R. Rodgers and D. G. Watson, Acta Crystallogr., 1979, B35, 2331 CAS.
  15. A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson and R. Taylor, J. Chem. Soc., Dalton Trans., 1989, S1 RSC.
  16. (a) L. Pauling, J. Am. Chem. Soc., 1947, 69, 542 CrossRef CAS; (b) H. S. Johnston and C. Parr, J. Am. Chem. Soc., 1963, 85, 2544 CrossRef CAS; (c) H.-B. Bürgi and J. D. Dunitz, J. Am. Chem. Soc., 1987, 109, 2924 CrossRef; (d) V. Bertolasi, P. Gilli, V. Ferretti and G. Gilli, Chem. Eur. J., 1996, 2, 925 CAS.
  17. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th edn., J. Wiley and Sons, New York, 1988, pp. 776 and 847 Search PubMed.
  18. (a) I. B. Bersuker, Teor. Eksp. Khim., 1978, 14, 3 Search PubMed; (b) I. B. Bersuker, The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry, Plenum, New York, 1984 Search PubMed.
  19. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn., ed. J. Wiley and Sons, New York, 1986 Search PubMed.
  20. I. M. Mills, Theor. Chem. (London), 1974, 1, 110 Search PubMed.
  21. (a) G. Schwarzenbach, H.-B. Bürgi, W. P. Jensen, G. A. Lawrance, L. Mønsted and A. M. Sargeson, Inorg. Chem., 1983, 22, 4029 CrossRef CAS; (b) N. Bresciani-Pahor, S. Geremia, C. Lopez, L. Randaccio and E. Zangrando, Inorg. Chem., 1990, 29, 1043 CrossRef CAS; (c) R. C. Elder, M. J. Heeg, M. D. Payne, M. Trkula and E. Deutsch, Inorg. Chem., 1978, 17, 431 CrossRef CAS; (d) E. Muller and H.-B. Bürgi, Helv. Chim. Acta, 1987, 70, 499 CrossRef.
  22. (a) C. E. Blom, C. Altona and A. Oskam, Mol. Phys., 1977, 34, 557 CAS; (b) W. Pyckhout, P. Van Nuffel, C. Van Alsenoy, L. Van den Enden and H. J. Geise, J. Mol. Struct., 1983, 102, 333 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.