Highly efficient photoinduced electron transfer on a benzothiazolium styryl dye Langmuir–Blodgett monolayer modified-ITO electrode

(Note: The full text of this document is currently only available in the PDF Version )

Jie Zheng, Deng-guo Wu, Jin Zhai, Chun-hui Huang, Wei-wei Pei and Xi-cun Gao


Abstract

An amphiphilic benzothiazolium styryl dye 2-(4-dihexadecylaminostyryl)benzothiazole methiodide (DBM) was synthesized and deposited on a conducting transparent indium–tin oxide (ITO) electrode in H-aggregates by using the Langmuir–Blodgett (LB) technique. Its photoelectrochemistry was investigated in a traditional three-electrode cell. Coincidence of its action spectrum and the absorption spectrum on the ITO indicated that DBM was responsible for the generation of the photocurrent. Under favorable conditions, its monolayer quantum yield can reach as high as 4.2%. A mechanism of photoinduced electron transfer in this system was proposed based on the experiments and theoretical calculations.


References

  1. A. Haran, D. H. Waldeck, R. Naaman, E. Moons and D. Cahen, Science, 1994, 263, 948 CrossRef CAS.
  2. (a) M. Fujihira, New Functionality Materials, Elsevier, Amsterdam, 1993 Search PubMed; (b) W. E. Moerner and S. M. Silence, Chem. Rev., 1994, 94, 127 CrossRef CAS.
  3. G. J. Ashwell, G. Jefferies, D. G. Hamilton, D. E. Lynch, M. P. S. Roberts, G. S. Bahra and C. R. Brown, Nature (London), 1995, 375, 385 CrossRef CAS.
  4. M. Liu, K. Ushide, H. Nakahara and A. Kira, Adv. Mater, 1997, 14, 1099 CrossRef.
  5. C. Bubeck, A. Laschewsky, D. Lupo, D. Neher, P. Ottenbreit, W. Paulus, W. Prass, H. Ringsdorf and G. Wenger, Adv. Mater., 1991, 3, 54 CrossRef CAS.
  6. W.-S. Xia, C.-H. Huang, L.-B. Gan and H. Li, J. Chem. Soc., Faraday Trans., 1997, 92, 3131 Search PubMed.
  7. T. R. Cheng and C. H. Huang, J. Mater. Chem., 1997, 7, 631 RSC.
  8. D.-W. Wu, Y.-Y. Huang, C.-H. Huang and L.-B. Gan, J. Chem. Soc., Faraday Trans., 1998, 94, 1411 RSC.
  9. Ph. Hebert, G. Baldacchino, Th. Gustavsson and J. C. Mialocq, J. Photochem. Photobiolol. A: Chem., 1994, 84, 45 Search PubMed.
  10. I. Yoshio, H. Takanori and K. Takashi, Nippon Shashin Gakkaishi, 1996, 59, 260 Search PubMed.
  11. M. H. Lu and Y. M. Liu, Appl. Phys., B, 1992, 354, 288.
  12. R. P. Haugland and V. L. Singer, Asian J. Chem., 1997, 9, 264 Search PubMed.
  13. I. K. Lednev, T. Q. Ye, R. E. Hester and J. N. Moore, J. Phys. Chem. A., 1997, 101, 4966 CrossRef CAS.
  14. C. E. Evans, Q. Song and P. W. Bohn, J. Phys. Chem., 1993, 97, 12302 CrossRef CAS.
  15. S. Dahne, Z. Chem., 1981, 21, 58.
  16. A. J. Bard, Science, 1980, 207, 139 CAS.
  17. L. S. Roman, M. R. Andersson, T. Yohannes and O. Inganas, Adv. Mater., 1997, 9, 1164 CrossRef CAS.
  18. Y. S. Kim, K. Liang, Y. Law and D. G. Whitten, J. Phys. Chem., 1994, 98, 984 CrossRef CAS.
  19. A. D. Liang, J. Zhai and C. H. Huang, J. Phys. Chem. B., 1998, 102, 1424 CrossRef.
  20. A. Vaes, M. V. D. Auweraer, P. Bosmans and F. C. D. Schryver, J. Phys. Chem. B., 1998, 102, 5451 CrossRef CAS.
  21. G. J. Ashwell and D. Bloor, Organic Materials For Non-Linear Optics, The Royal Society of Chemistry, Cambridge, 1993, p. 19 Search PubMed.
  22. S. A. Haque, Y. Tachibana, D. R. Klug and J. R. Durrant, J. Phys. Chem. B, 1998, 102, 1745 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.