Statistical associating fluid theory for chains of attractive hard-spheres: Optimized equations of state

(Note: The full text of this document is currently only available in the PDF Version )

Leonid V. Yelash and Thomas Kraska


Abstract

New equations of state for chain molecules are proposed. The equations of state are physically sound and have a simple mathematical structure. The equations combine the recently developed simplified hard-sphere equations with the first order thermodynamic perturbation theory for chain molecules. The resulting equations of state show almost identical thermodynamic properties compared to the original equation of state for chains of attractive hard spheres. The advantage of the equations proposed here is the simple mathematical structure. They can be written as fourth order or cubic polynomial in the molar volume for which the molar volume can be calculated analytically for given temperature and pressure. This work shows that physically based model equations of state and simple equation structures can be incorporated. Furthermore the equations presented here enlarge the applicability of the statistical associating fluid theory for chain molecules.


References

  1. N. F. Carnahan and K. E. Starling, J. Chem. Phys., 1969, 51, 635 CrossRef CAS.
  2. J. K. Johnson, J. A. Zollweg and K. E. Gubbins, Mol. Phys., 1993, 78, 591 CAS.
  3. J. Kolafa and I. Nezbeda, Fluid Phase Equilib., 1994, 100, 1 CrossRef CAS.
  4. M. S. Wertheim, J. Chem. Phys., 1987, 87, 7323 CrossRef CAS.
  5. W. G. Chapman, G. Jackson and K. E. Gubbins, Mol. Phys., 1988, 65, 1057 CAS.
  6. A. Yethiraj and C. K. Hall, J. Chem. Phys., 1991, 95, 8494 CrossRef CAS.
  7. C.-H. Kim, P. Vimalchand, M. D. Donohue and S. I. Sandler, AIChE J., 1986, 32, 1726 CAS.
  8. Y. C. Chiew, Mol. Phys., 1990, 70, 129 CAS.
  9. U. K. Deiters, Fluid Phase Equilib., 1993, 89, 229 CrossRef CAS.
  10. W. G. Chapman, K. E. Gubbins, G. Jackson and M. Radosz, Fluid Phase Equilib., 1989, 52, 31 CrossRef CAS.
  11. I. G. Economou, G. D. Ikonomou, P. Vimalchand and M. D. Donohue, AIChE J., 1990, 36, 1851 CAS.
  12. D. Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam., 1976, 15, 59 Search PubMed.
  13. W. G. Chapman, K. E. Gubbins, G. Jackson and M. Radosz, Ind. Eng. Chem. Res., 1990, 29, 1709 CrossRef CAS.
  14. S. H. Huang and M. Radosz, Ind. Eng. Chem. Res., 1991, 30, 1994 CrossRef CAS.
  15. M. S. Wertheim, J. Stat. Phys., 1984, 35, 19.
  16. M. S. Wertheim, J. Stat. Phys., 1984, 35, 35.
  17. M. S. Wertheim, J. Stat. Phys., 1986, 42, 459.
  18. J. M. Walsh and K. E. Gubbins, J. Phys. Chem., 1990, 94, 5115 CrossRef CAS.
  19. S. J. Suresh, R. M. Enick and E. J. Beckman, Macromolecules, 1994, 27, 348 CrossRef CAS.
  20. T. Kraska and K. E. Gubbins, Ind. Eng. Chem. Res., 1996, 35, 4727 CrossRef CAS.
  21. T. Kraska and K. E. Gubbins, Ind. Eng. Chem. Res., 1996, 35, 4738 CrossRef CAS.
  22. F. J. Blas and L. F. Vega, Ind. Eng. Chem. Res., 1998, 37, 660 CrossRef CAS.
  23. M. Kontogeorgis, E. C. Voutsas, I. V. Yakoumis and D. P. Tassios, Ind. Eng. Chem. Res., 1996, 35, 4310 CrossRef.
  24. L. V. Yelash and T. Kraska, Ber. Bunsen-Ges. Phys. Chem., 1998, 102, 213 CAS.
  25. L. V. Yelash and T. Kraska, Z. Phys. Chem., in the press Search PubMed.
  26. L. V. Yelash and T. Kraska, Phys. Chem. Chem. Phys., 1999, 1, 307 RSC.
  27. T. Kraska, Ind. Eng. Chem. Res., 1998, 37, 4889 CrossRef.
  28. L. V. Yelash, T. Kraska and U. K. Deiters, J. Chem. Phys., 1999, 110, 3079 CrossRef CAS.
  29. L. V. Yelash and T. Kraska, Fluid Phase Equilib., submitted Search PubMed.
  30. Programs for solving cubic and quartic equations are available at: http://www.uni-koeln.de/math-nat-fak/phchem/solve.html.
Click here to see how this site uses Cookies. View our privacy policy here.