Spectroscopic measurement of the acid dissociation constant of 2-naphthol and the second dissociation constant of carbonic acid at elevated temperatures

(Note: The full text of this document is currently only available in the PDF Version )

SungNam Park, Hyeongnam Kim, Keon Kim, JeongAe Lee and Dong-seok Lho


Abstract

2-Naphthol can be used to measure the pH of aqueous solutions if the acid dissociation constant for 2-naphthol is known at a given temperature. The temperature dependence of the acid dissociation constant for 2-naphthol was spectroscopically determined in borate buffer solutions under vapor-saturated pressure up to 200°C. The result was

where T is in Kelvin. The pH of carbonate buffer solutions was measured by obtaining the UV–visible spectra of 2-naphthol and utilized to determine the second dissociation constant of carbonic acid up to 175°C under vapor-saturated pressure. The result was
where T is in Kelvin. By using the temperature dependence of the dissociation constant, the isocoulombic reaction was studied. The plot of -log Kisoc against 1/T was approximately linear in the temperature range studied. The linearity can be used to predict the dissociation constant by the extrapolation of -log Kisoc to higher temperatures.


References

  1. P. Boudreau and D. E. Canfield, Geochim. Cosmochim. Acta, 1993, 57, 317 CrossRef.
  2. P. V. Cappellen, L. Charlet, W. Stumn and P. Wersin, Geochim. Cosmochim. Acta, 1993, 57, 3505 CAS.
  3. D. W. Morrow, B. L. Gorham and J. N. Y. Wang, Geochim. Cosmochim. Acta, 1994, 58, 169 CAS.
  4. L. N. Plummer and E. Busenberg, Geochim. Cosmochim. Acta, 1982, 46, 1011 CrossRef CAS.
  5. J. C. Peiper and K. S. Pitzer, J. Chem. Thermodyn., 1982, 14, 613 CAS.
  6. B. N. Ryzhenko, Geochemistry, 1963, 2, 151 Search PubMed.
  7. J. Read, J. Solution Chem., 1975, 4, 53 CAS.
  8. C. S. Patterson, G. H. Slocum, R. H. Busey and R. E. Mesmer, Geochim. Cosmochim. Acta, 1982, 46, 1653 CAS.
  9. C. S. Patterson, R. H. Busey and R. E. Mesmer, J. Solution Chem., 1984, 13, 647 CAS.
  10. P. C. Ho and D. A. Palmer, Geochim. Cosmochim. Acta, 1997, 61, 3027 CrossRef CAS.
  11. R. N. Roy, J. J. Gibbons, R. Williams, L. Godwin, G. Baker, J. M. Simonson and K. S. Pitzer, J. Chem. Thermodyn., 1984, 16, 303 CAS.
  12. J. Ellis, Am. J. Sci., 1959, 257, 217 Search PubMed.
  13. Y. S. Huh, J. G. Lee, D. C. McPhail and K. Kim, J. Solution Chem., 1993, 22, 615 CrossRef.
  14. I. J. Lee, G. S. Jung and K. Kim, J. Solution Chem., 1994, 23, 1283 CAS.
  15. T. W. Shin, K. Kim and I. J. Lee, J. Solution Chem., 1997, 26, 379 CAS.
  16. M. H. Kim, C. S. Kim, H. W. Lee and K. Kim, J. Chem. Soc., Faraday Trans., 1996, 92, 4951 RSC.
  17. R. Boyer, G. Deckey, C. Marzzacco, M. Mulvaney, C. Schwab and A. M. Halpern, J. Chem. Educ., 1985, 62, 630 CAS.
  18. J. P. Soumillion, P. Vandereecken, V. D. Auweraer, F. C. De Schryver and A. Schanck, J. Am. Chem. Soc, 1989, 111, 2217 CrossRef CAS.
  19. S. Green, T. Xiang, K. P. Johnston and M. A. Fox, J. Phys. Chem., 1995, 99, 13787 CrossRef CAS.
  20. S. N. Park, C. S. Kim, M. H. Kim, I. J. Lee and K. Kim, J. Chem. Soc., Faraday Trans., 1998, 94, 1421 RSC.
  21. D. G. Hafeman, K. L. Crawford and L. J. Bousse, J. Phys. Chem., 1993, 97, 3058 CrossRef CAS.
  22. L. F. Silvester and K. S. Pitzer, J. Phys. Chem., 1977, 81, 1822 CrossRef CAS.
  23. K. S. Pitzer and G. Mayorga, J. Solution Chem., 1974, 3, 539 CAS.
  24. D. J. Bradley and K. S. Pitzer, J. Phys. Chem., 1979, 83, 1599 CrossRef CAS.
  25. R. E. Mesmer, C. F. Baes, Jr. and F. H. Sweeton, Inorg. Chem., 1972, 11, 537 CrossRef CAS.
  26. W. L. Marshall and E. U. Franck, J. Phys. Chem. Ref. Data, 1981, 10, 295 CAS.
  27. H. R. Corti and R. J. Fernandez-Prini, High-Temperature Aqueous Solutions: Thermodynamic Properties, CRC Press, Boca Raton, FL, 1992 Search PubMed.
  28. F. M. M. Morel and J. G. Hering, Principles and Applications of Aquatic Chemistry, Wiley, New York, 1993, p. 61 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.