Thermodynamics of electrolytes in aqueous systems containing both ionic and nonionic solutes. Application of the Pitzer–Simonson–Clegg equations to activity coefficients and solubilities of 1:1 electrolytes in four electrolyte–non-electrolyte–H2O ternary systems at 298.15 K

(Note: The full text of this document is currently only available in the PDF Version )

Yu-Feng Hu and Tian-Min Guo


Abstract

The Pitzer–Simonson–Clegg equation is applied to the salt activity coefficients and solubilities in ternary systems NaCl–sucrose–H2O, NaCl–urea–H2O, NaCl–mannitol–H2O, and KCl–glycine–H2O at 298.15 K. The results are compared with the isopiestic, emf, and solubility measurements. The model with a zero parameter (Yl,n,MX) relating interactions between two neutral species and two ions is valid at high electrolyte:non-electrolyte ratios. The introduction of the macroscopic relative permittivity, the mean molar mass, and the density of non-electrolyte–H2O mixture in the Debye–Hückel constant and the "‘closest approach’' parameter significantly worsens the model calculations. The model predictions are also slightly worsened if a constant nonzero Yl,n,MX is added. The accuracy of the model at lower salt proportions can be considerably improved by making the parameter Yl,n,MX dependent either on ionic strength or on ionic strength and mole fraction of nonionic solute. Under these conditions, the model can provide good description of salt activity coefficients and solubilities over entire experimental composition ranges. These results suggest that a composition dependent parameter Yl,n,MX is needed for the present four systems.


References

  1. R. A. Robinson and R. H. Stokes, J. Phys. Chem., 1962, 66, 506 CAS.
  2. T. M. Herrington and C. P. Meunier, J. Chem. Soc., Faraday Trans., 1982, 78, 225 RSC.
  3. R. A. Robinson, R. H. Stokes and K. N. Marsh, J. Chem. Thermodyn., 1970, 2, 745 CAS.
  4. J. J. Wang, W. B. Liu, J. Fan and J. S. Lu, J. Chem. Soc., Faraday Trans., 1994, 90, 3281 RSC.
  5. R. H. Stokes, J. Chem. Soc., Faraday Trans., 1995, 91, 1457 RSC.
  6. V. E. Bower and R. A. Robinson, J. Phys. Chem., 1963, 67, 1524 CrossRef CAS.
  7. F. J. Kelly, R. A. Robinson and R. H. Stokes, J. Phys. Chem., 1961, 65, 1958 CAS.
  8. V. E. Bower and R. A. Robinson, J. Res. Nat. Bur. Stand., Sect. A., 1965, 69, 131 Search PubMed.
  9. R. M. Roberts and J. G. Kirwood, J. Am. Chem. Soc., 1941, 63, 1373 CrossRef CAS.
  10. Y. F. Hu, PhD Thesis, Northeastern University, Shenyang, China, 1997.
  11. Y. F. Hu, 1998, in preparation.
  12. Y. F. Hu, J. Chem. Soc., Faraday Trans., 1998, 94, 3251 RSC.
  13. J. A. Rard and R. F. Platford, in Activity Coefficients in Electrolyte Solutions, ed. K. S. Pitzer, CRC Press, Boca Raton, FL, USA, 2nd edn., 1991 Search PubMed.
  14. Y. F. Hu, J. Solution Chem., 1998, 27, 255 CAS.
  15. Z. C. Wang, H. L. Yu and Y. F. Hu, J. Chem. Thermodyn., 1994, 26, 171 CrossRef CAS.
  16. Y. F. Hu and and Z. C. Wang, J. Chem. Thermodyn., 1994, 26, 429 CrossRef CAS; 1997, 29, 879.
  17. J. W. Lorimer, Pure Appl. Chem., 1993, 65, 183 CAS.
  18. H. Pan, S. Han and Y. Yao, J. Chem. Ind. Eng. (China, Chin. Ed.), 1992, 43, 360 Search PubMed.
  19. J. A. Rard, J. Solution Chem., 1990, 19, 525 CAS.
  20. Y. F. Hu, J. Chem. Soc., Faraday Trans., 1998, 94, 913 RSC.
  21. H. A. C. Mckay and J. K. Perring, Trans. Faraday Soc., 1953, 49, 163 RSC.
  22. R. H. Stokes and R. A. Robinson, J. Phys. Chem., 1966, 70, 2126 CrossRef CAS.
  23. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworths, London, 1965 Search PubMed.
  24. K. S. Pitzer, J. Phys. Chem., 1973, 77, 268 CrossRef CAS.
  25. R. A. Robinson and R. H. Stokes, J. Phys. Chem., 1961, 65, 1954 CAS.
  26. K. S. Pitzer and and J. M. Simonson, J. Phys. Chem., 1986, 90, 3005 CrossRef CAS; 1991, 95, 6746.
  27. S. L. Clegg and and K. S. Pitzer, J. Phys. Chem., 1992, 96, 3513 CrossRef; 1994, 98, 1368.
  28. S. L. Clegg, K. S. Pitzer and P. Brimblecombe, J. Phys. Chem., 1992, 96, 9470 CrossRef CAS.
  29. J. M. Simonson and K. S. Pitzer, J. Phys. Chem., 1986, 90, 3009 CrossRef CAS.
  30. K. S. Casrslaw, S. L. Clegg and P. Brimblecombe, J. Phys. Chem., 1995, 99, 11557 CrossRef.
  31. S. V. Petrenko and K. S. Pitzer, J. Phys. Chem., 1997, 101, 3589 Search PubMed.
  32. S. L. Clegg, P. Brimblecombe and and A. S. Wexler, J. Phys. Chem. A, 1998, 102, 2137 CrossRef CAS; 1998, 102, 2155.
  33. K. S. Pitzer and Y. G. Li, Proc. Natl. Acad. Sci. U.S.A., 1983, 80, 7689 CAS.
  34. Y. G. Li and A. E. Mather, Ind. Eng. Chem. Res., 1994, 33, 2006 CrossRef CAS.
  35. W. M. Qian, Y. G. Li and A. E. Mather, Ind. Eng. Chem. Res., 1995, 34, 2545 CrossRef CAS.
  36. N. Schoorl, Rec. Trav. Chim., 1923, 42, 790 CAS.
  37. J. E. Garrod and T. M. Herrington, J. Phys. Chem., 1970, 74, 363 CrossRef CAS.
  38. C. G. Malmberg and A. A. Maryott, J. Res. Nat. Bur. Stand., 1950, 45, 299 Search PubMed.
  39. H. D. Ellerton, G. Reinfelds, D. E. Mulcahy and P. J. Dunlop, J. Phys. Chem., 1964, 68, 398 CrossRef CAS.
  40. J. Sangster, T. T. Teng and F. Lenzi, J. Solution Chem., 1976, 5, 575 CAS.
  41. N. Daldrup and H. Schönert, J. Chem. Soc., Faraday Trans., 1988, 84, 2553 Search PubMed.
  42. JR. F. T. Gucker, F. W. Gage and C. E. Moser, J. Am. Chem. Soc., 1938, 60, 2582 CrossRef.
  43. J. JR. Wyman, J. Am. Chem. Soc., 1933, 55, 4116 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.