Vibrational relaxation of NO(=1–3) and NO2(0,0,1) with atmospheric gases

(Note: The full text of this document is currently only available in the PDF Version )

Birger Bohn, Alan Doughty, Gus Hancock, Emily L. Moore and Claire Morrell


Abstract

Measurements are reported of the vibrational quenching of NO(v=1–3) by NO2 and O2, and of NO2(0,0,1) by NO, O2 and N2, close to room temperature. Vibrationally excited NO was formed from the photolysis of NO2 at 308 and 355 nm, and the kinetic behaviour of the different levels was followed by wavelength resolved FTIR emission. The rate constant for the removal of NO(v=1) by NO2, (1.9±0.2)×10-12 cm3 molecule-1 s-1, is in excellent agreement with previous measurements. For v=2 and 3 the rate constants showed a marked increase, with values of (2.9±0.3) and (4.8±0.7)×10-12 cm3 molecule-1 s-1 respectively, and the relaxation process was found to proceed dominantly through single quantum transitions in NO. However, simultaneous observation of emission from the (0,0,1) level of NO2 revealed that although single quantum exchange between NO and NO2(0,0,1) is close to resonance it took place with less than 50% quantum efficiency. The results are discussed in terms of formation of a N2O3 complex in which free flow of energy is incomplete. For quenching by O2, energy transfer again was found to be dominated by single quantum loss in NO, with rate constants of (2.4±0.2), (5.3±2.6) and (12±4)×10-14 cm3 molecule-1 s-1 for v=1, 2 and 3, respectively, in good agreement with previously reported values. Vibrationally excited NO2 was produced by the reaction of NO with NO3, and its quenching kinetics studied by observation of time resolved emission. Rate constants were found to be (4.0-1.5+1.9)×10-12, (1.8-0.8+1.1)×10-13 and (3.1-1.0+1.3)×10-14 cm3 molecule-1 s-1 for quenching by NO, O2 and N2 respectively. The results show that for the first two species the rate constants are similar to those previously reported for quenching of NO2 with moderate but unspecified excitation in the ν1 and ν3 modes, but for N2 the present value is a factor of four lower. As quenching rate constants for the ν13 modes have been used for estimations of the atmospheric quenching rate of NO2(0,0,1), the present results suggest that these estimates need downward revision by approximately a factor of 2.5.


References

  1. G. W. Flynn, C. S. Parmenter and A. M. Wodtke, J. Phys. Chem., 1996, 100, 12817 CrossRef CAS.
  2. I. W. M. Smith, J. Chem. Soc., Faraday Trans., 1997, 93, 3741 RSC.
  3. A. B. Callear, Discuss. Faraday Trans., 1962, 33, 28 Search PubMed; Appl. Opt. Suppl., 1965, 2, 145 Search PubMed.
  4. W. A. Rossner, A. D. Wood and E. T. Gerry, J. Chem. Phys., 1969, 50, 4996 CrossRef; C. B. Moore, R. E. Wood, B. L. Hu and J. T. Yardley, J. Chem. Phys., 1996, 46, 4222 CrossRef.
  5. J. A. Mack, K. Mikulecky and A. M. Wodtke, J. Chem. Phys., 1996, 105, 4105 CrossRef CAS.
  6. P. Biggs, G. Hancock, D. E. Heard and R. P. Wayne, Meas. Sci. Technol., 1990, 1, 630 CrossRef CAS.
  7. G. Hancock and D. E. Heard, Adv. Photochem., 1993, 18, 1 Search PubMed.
  8. I. W. M. Smith, Chem. Soc. Rev., 1985, 14, 141 RSC.
  9. B. J. Kerridge and E. E. Remsberg, J. Geophys. Res., 1989, 94, 16 323.
  10. F. W. Taylor, C. D. Rodgers, J. J. Remedios, R. G. Grainger, A. Lambert, M. Lopez-Valverde, M. Goss-Custard and J. Reburn, J. Chem. Soc., Faraday Discuss., 1995, 100, 353 RSC.
  11. M. F. Golde and F. Kaufman, Chem. Phys. Lett., 1974, 29, 480 CrossRef CAS.
  12. K. K. Hui and T. A. Cool, J. Chem. Phys., 1978, 68, 1022 CrossRef CAS.
  13. T. L. Mazely, R. R. Friedl and S. P. Sander, J. Chem. Phys., 1994, 100, 8040 CrossRef CAS.
  14. J. J. F. McAndrew, J. M. Preses and R. E. Weston Jr., J. Chem. Phys., 1989, 90, 4772 CrossRef CAS; J. Z. Chou, S. A. Hewitt, J. F. Herschberger and G. W. Flynn, J. Chem. Phys., 1990, 93, 8474 CrossRef CAS; B. M. Toselli, T. L. Walunas and J. R. Barker, J. Chem. Phys., 1990, 92, 4793 CrossRef CAS.
  15. G. V. Harland, D. Qin and H.-L. Dai, J. Chem. Phys., 1994, 100, 7832 CrossRef CAS; G. V. Harland, D. Qin and H.-L. Dai, J. Chem. Phys., 1994, 100, 8554 CrossRef; C. D. Pibel, E. Sirota, J. Brenner and H.-L. Dai, J. Chem. Phys., 1998, 108, 1297 CrossRef CAS.
  16. H. L. Welch, C. Cumming and E. J. Stansbury, J. Opt. Soc. Am., 1951, 41, 712 Search PubMed.
  17. A. Doughty, G. Hancock and E. L. Moore, Chem. Phys. Lett., 1997, 274, 58 CrossRef CAS.
  18. I. W. M. Smith, R. P. Tuckett and C. J. Whitham, Chem. Phys. Lett., 1992, 200, 615 CrossRef CAS.
  19. J. A. Dodd, R. B. Lockwood, S. M. Miller and W. A. M. Blumberg, J. Chem. Soc., Faraday Trans., 1997, 93, 2637 RSC.
  20. J. C. Stephenson, J. Chem. Phys., 1974, 60, 4289 CAS.
  21. R. P. Fernando and I. W. M. Smith, J. Chem. Soc., Faraday Trans. 2, 1981, 77, 459 RSC.
  22. I. J. Wysong, Chem. Phys. Lett., 1994, 227, 69 CrossRef CAS.
  23. I. J. Wysong, J. Chem. Phys., 1994, 101, 2800 CrossRef CAS.
  24. I. W. M. Smith and G. Yarwood, Faraday Discuss. Chem. Soc., 1987, 84, 205 RSC.
  25. B. Markwalder, P. Gozel and H. van den Bergh, J. Chem. Phys., 1993, 97, 5260 CAS.
  26. G. Hancock and I. W. M. Smith, Appl. Opt., 1971, 10, 1827.
  27. B. D. Green, G. E. Caledonia, R. E. Murphy and F. X. Robert, J. Chem. Phys., 1982, 76, 2441 CrossRef CAS.
  28. R. E. Murphy, E. T. P. Lee and A. M. Hart, J. Chem. Phys., 1975, 63, 2919 CrossRef CAS.
  29. J. C. Stephenson and S. M. Freund, J. Chem. Phys., 1976, 65, 4304.
  30. J. Kosanetsky, U. List, W. Urban, H. Vormann and E. H. Fink, Chem. Phys., 1980, 50, 361 CrossRef.
  31. M. Hunter, S. A. Reid, D. C. Dobie and H. Reisler, J. Chem. Phys., 1993, 99, 1093 CrossRef CAS.
  32. W. S. Guillory and H. S. Johnston, J. Chem. Phys., 1965, 42, 2457 CAS.
  33. A. Goldman, F. S. Bonomo, W. J. Williams, D. G. Murcray and D. E. Snider, J. Quantum Spectrosc. Radiat. Transfer, 1975, 15, 107 CrossRef CAS.
  34. S. R. Langhoff, C. W. Bauschlicher Jr. and H. Partridge, Chem. Phys. Lett., 1994, 223, 416 CrossRef CAS.
  35. M. Klatt, I. W. M. Smith, A. C. Symonds, R. P. Tuckett and G. N. Ward, J. Chem. Soc., Faraday Trans., 1996, 92, 193 RSC.
  36. N. G. Basov, A. S. Bashkin, V. I. Igoshin, A. N. Oraevsky and V. A. Shcheglov, Chemical Lasers, Springer-Verlag, Berlin, 1990 Search PubMed.
  37. A. Mellouki, G. LeBras and G. Poulet, J. Chem. Phys., 1987, 91, 5760 CAS; M. M. Rahman, E. Becker, T. Benter and R. N. Schindler, Ber. Bunsen-Ges. Phys. Chem., 1988, 92, 91 Search PubMed; P. H. Wine, J. R. Wells and J. M. Nicovich, J. Chem. Phys., 1988, 92, 2223 CAS; E. Becker, Th. Benter, R. Kampf, R. N. Schindler and U. Wille, Ber. Bunsen-Ges. Phys. Chem., 1991, 95, 1168 CAS.
  38. D. E. Taleb, J. L. Ponche and P. Mirabel, J. Geophys. Res., 1996, 101, 25967 CAS.
  39. P. D. Hammer, E. J. Dlugokencky and C. J. Howard, J. Chem. Phys., 1986, 90, 2491 CAS; S. P. Sander and C. C. Kircher, Chem. Phys. Lett., 1986, 126, 149 CrossRef CAS; G. S. Tyndall, J. J. Orlando, C. A. Cantrell, R. E. Shetter and J. G. Calvert, J. Chem. Phys., 1991, 95, 4381 CAS.
  40. P. N. Clough and B. A. Thrush, Trans. Faraday Soc., 1969, 65, 23 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.