Simulation of amphiphilic mesophases using dissipative particle dynamics

(Note: The full text of this document is currently only available in the PDF Version )

Simon Jury, Peter Bladon, Mike Cates, Sujata Krishna, Maarten Hagen, Noel Ruddock and Patrick Warren


Abstract

We study a dense solution of an amphiphilic species using the dissipative particle dynamics (DPD) algorithm, focussing on the smectic mesophase. Since DPD is locally momentum-conserving, it gives at large length scales a faithful representation of the isothermal hydrodynamics of the system. Results are presented for the phase diagram of a minimal amphiphile model, consisting of rigid AB dimers in a solution of C monomers, for the coarsening dynamics of a polydomain smectic phase, and for the formation of a monodomain smectic when shear is applied.


References

  1. See, e.g., R. G. Larson and P. T. Mather, in Theoretical Challenges in the Dynamics of Complex Fluids, ed. T. C. B. McLeish, NATO ASI Series E, Kluwer, Dordrecht, The Netherlands, 1997, vol. 339 Search PubMed.
  2. G. Gompper and M. Schick, Self-Assembling Amphiphilic Systems, Academic Press, New York, 1994 Search PubMed.
  3. R. G. Larson, J. Phys. II, 1996, 6, 1441 Search PubMed.
  4. B. Smit, K. Esselink, P. A. J. Hilbers, N. M. van Os and I. Szleifer, Langmuir, 1993, 9, 9 CrossRef CAS.
  5. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon, Oxford, 1993 Search PubMed.
  6. F. Nallet, D. Roux and J. Prost, J. Phys., 1989, 50, 3147 Search PubMed.
  7. P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett., 1992, 19, 155 Search PubMed.
  8. P. Español and P. B. Warren, Europhys. Lett., 1995, 30, 191 Search PubMed Note that the original algorithm of ref. 7 did not implement the fluctuation–dissipation theorem correctly.
  9. R. D. Groot and P. B. Warren, J. Chem. Phys., 1997, 107, 4423 CrossRef CAS.
  10. P. B. Warren, Curr. Opin. Colloid Interface Sci., 1998, 3, 620 CAS.
  11. E. S. Boek, P. V. Coveney, H. N. W. Lekkerkerker and P. van der Schoot, Phys. Rev. E, 1997, 55, 3124 CrossRef CAS; A. G. Schlijper, P. J. Hoogebrugge and C. W. Manke, J. Rheol., 1995, 39, 567 CrossRef CAS.
  12. S. I. Jury, P. Bladon, S. Krishna and M. E. Cates, Phys. Rev. E., submitted Search PubMed.
  13. R. D. Groot and T. J. Madden, J. Chem. Phys., 1998, 108, 875 CrossRef CAS; R. D. Groot, T. J. Madden and D. J. Tildesley, J. Chem. Phys., accepted for publication Search PubMed.
  14. B. M. Boghosian, P. V. Coveney and A. N. Emerton, Proc. R. Soc. London Ser. A, 1996, 453, 1221; O. Thiessen, G. Gompper and D. M. Kroll, Europhys. Lett., 1998, 42, 419 Search PubMed; G. Gonnella, E. Orlandini and J. M. Yeomans, Phys. Rev. Lett., 1997, 78, 1695 CrossRef.
  15. W. Schroeder, K. Martin and B. Lorensen, The Visualisation Toolkit, Prentice Hall, Englewood Cliffs, NJ, 1996 Search PubMed.
  16. D. J. Mitchell, G. J. T. Tiddy, L. Waring, T. Bostock and M. P. McDonald, J. Chem. Soc., Faraday Trans. 1, 1983, 79, 975 RSC.
  17. R. G. Laughlin, The Aqueous Phase Behavior of Surfactants, Academic Press, New York, 1994 Search PubMed.
  18. If one considers the scattering object to be a bilayer rather than particles then S(k) becomes the product of a structure factor for the smectic and a form factor for the bilayer. The latter, though not the former, strongly depends on the contrast chosen.
  19. M. E. Cates and S. T. Milner, Phys. Rev. Lett., 1989, 62, 1856 CrossRef CAS.
  20. C. R. Safinya and R. F. Bruinsma, Phys. Rev. A, 1991, 43, 5377 CrossRef.
  21. G. H. Fredrickson and F. S. Bates, Annu. Rev. Mater. Sci., 1996, 26, 501 Search PubMed.
  22. O. Diat, D. Roux and F. Nallet, J. Phys. II, 1993, 3, 1427 Search PubMed.
  23. P. Panizza, P. Archambault and D. Roux, J. Phys. II, 1995, 5, 303 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.