Statistical thermodynamic treatment of conformational transitions of monomeric and oligomeric proteins

(Note: The full text of this document is currently only available in the PDF Version )

Jörg Rösgen and Hans-Jürgen Hinz


Abstract

The conformational transitions of monomeric and oligomeric proteins as manifested in the heat capacity changes associated with thermal unfolding were quantitatively analysed on the assumption that proteins can be treated as members of a canonical ensemble. This treatment permits the calculation of the partition function Y(T, p) relative to the native state. The second derivative of Y(T, p) with respect to temperature represents perfectly the experimental heat capacity curve of the protein. The proper analysis of the statistical thermodynamic model results in an intriguing phenomenon for all transitions except for the simplest case ND: the proportionality between the enthalpy and the population shift is lost. It is shown that this phenomenon can be both rationalised theoretically and verified experimentally for the N22D transition of the protein ROP.


References

  1. R. Lumry, R. L. Biltonen and J. F. Brandts, Biopolymers, 1966, 4, 917 CAS.
  2. E. Freire and R. L. Biltonen, Biopolymers, 1978, 17, 463 CrossRef CAS.
  3. J. Wyman, S. J. Gill and A. Colosimo, Biophys. Chem., 1979, 10, 363 CrossRef CAS.
  4. A. Cooper, Prog. Biophys. Mol. Biol., 1984, 44, 181 CrossRef CAS.
  5. S.-I. Kidokoro and A. Wada, Biopolymers, 1987, 26, 213 CAS.
  6. S.-I. Kidokoro, H. Uedaira and A. Wada, Biopolymers, 1988, 27, 271 CAS.
  7. E. Freire, Comments Mol. Cell. Biophys., 1989, 6, 123 Search PubMed.
  8. J. F. Brandts and L.-N. Lin, Biochemistry, 1990, 29, 6927 CrossRef CAS.
  9. J. Wyman and S. J. Gill, Binding and Linkage, University Science Books, Mill Valley, CA, 1990 Search PubMed.
  10. E. di Cera, Thermodynamic Theory of Site-specifc Binding Processes in Biological Macromolecules, Cambridge University Press, New York, 1995 Search PubMed.
  11. T. L. Hill, Thermodynamics of Small Systems, Benjamin, New York, 1963 Search PubMed.
  12. R. Huber, R. Berends, A. Burger, M. Schneider, A. Karshikov, H. Luecke, J. Roemisch and E. Paques, J. Mol. Biol., 1992, 223, 683 CAS.
  13. J. Sopkova, M. Renouard and A. Lewit-Bentley, J. Mol. Biol., 1993, 234, 816 CrossRef CAS.
  14. K. Kuwajima, Proteins: Struct. Funct. Genet., 1989, 6, 87 CAS.
  15. A. Chaffotte, Y. Guillou, M. Delepierre, H.-J. Hinz and M. E. Goldberg, Biochemistry, 1991, 30, 8067 CrossRef CAS.
  16. P. L. Privalov and S. A. Potekhin, Methods Enzymol., 1986, 131, 4 CAS.
  17. O. Kratky, H. Leopold and H. Stabinger, Methods Enzymol., 1973, 27, 98 CAS.
  18. H.-J. Hinz, T. Vogl and R. Meyer, Biophys. Chem., 1994, 52, 275 CAS.
  19. S. N. Timasheff, Annu. Rev. Biophys. Biomol. Struct., 1993, 22, 67 CrossRef CAS.
  20. T. Abou-Aiad, U. Becker, R. Biedenkamp, R. Brengelmann, R. Elsebrock, H.-J. Hinz and M. Stockhausen, Ber. Bunsen-Ges. Phys. Chem., 1997, 101, 1921 CAS.
  21. M. Toda, R. Kubo and N. SaitôStatistical Physics I, Springer, Berlin, 1983p. 63 Search PubMed.
  22. B. Hallerbach and H.-J. Hinz, Biophys. Chem., 1999, 76, 219 CrossRef CAS.
  23. J. Rösgen, B. Hallerbach and H.-J. Hinz, Biophys. Chem., 1998, 74, 153 CrossRef CAS.
  24. F. Franks, R. H. M. Hatley and H. L. Friedman, Biophys. Chem., 1988, 31, 307 CrossRef CAS.
  25. G. I. Makhatadze and P. L. Privalov, J. Mol. Biol., 1990, 213, 375 CAS.
  26. M. Häckel, H.-J. Hinz and G. R. Hedwig, Thermochim. Acta, 1998, 308, 23 CrossRef CAS.
  27. L. A. Marky and K. J. Breslauer, Biopolymers, 1987, 26, 1601 CrossRef CAS.
  28. P. L. Privalov, Y. V. Griko, S. Y. Venyaminov and V. P. Kutyshenko, J. Mol. Biol., 1986, 190, 487 CAS.
  29. P. L. Privalov, Adv. Prot. Chem., 1979, 33, 167 Search PubMed.
  30. W. J. Becktel and J. A. Schellman, Biopolymers, 1987, 26, 1859 CAS.
  31. J. A. Schellman, Biophys. Journal, 1997, 73, 2960 Search PubMed.
  32. C. Steif, P. Weber and H.-J. Hinz, Biochemistry, 1993, 32, 3867 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.