Apparent molar isentropic compressions of electrolytes as a function of the solution molality

(Note: The full text of this document is currently only available in the PDF Version )

João Carlos R. Reis and Manuel A. P. Segurado


Abstract

A semi-empirical equation is derived to express apparent molar isentropic compressions of electrolytes as a function of the solution molality. This is achieved by combining a recent, more amenable equation for the difference between apparent molar isentropic and isothermal compressions, with Pitzer equations for the apparent molar quantities isothermal compression, isobaric expansion and isobaric thermal capacity. In addition to Pitzer's parameters, the new equation contains only pure-solvent quantities. Second and higher virial coefficients for the apparent molar isentropic compression embody contributions from lower-order coefficients. Contrary to conventional wisdom, the Debye–Hückel limiting law (DHLL) for apparent molar isentropic compressions of salt solutions cannot be translated into a linear dependence on a function of the solution molality. The equation herein introduced is tested with extensive literature data for aqueous solutions of sodium chloride up to saturation concentration at 278, 298 and 318 K. Evidence is found for quaternary ion interactions in apparent molar compressions of concentrated salt solutions below 318 K. The new equation and its up to five-parameter empirical versions are capable of extrapolation to infinite dilution. For the first time, experimental and theoretical DHLL slopes for the apparent molar isentropic compression are found to be in fair agreement. Finally, revised values are given for some thermodynamic properties of aqueous sodium chloride.


References

  1. F. T. Gucker Jr., F. W. Lamb, G. A. Marsh and R. M. Haag, J. Am. Chem. Soc., 1950, 72, 310 CrossRef.
  2. J. E. Desnoyers and P. R. Philip, Can. J. Chem., 1972, 50, 1094 CAS.
  3. J. C. R. Reis, J. Chem. Soc., Faraday Trans., 1998, 94, 2385 RSC.
  4. M. Sakurai, T. Nakajima, T. Komatsu and T. Nakagawa, Chem. Lett., 1975, 971 CAS.
  5. M. Sakurai, T. Komatsu and T. Nakagawa, Bull. Chem. Soc. Jpn., 1981, 54, 643 CAS.
  6. F. Kawaizumi, K. Matsumoto and H. Nomura, J. Phys. Chem., 1983, 87, 3161 CrossRef CAS.
  7. J. I. Lankford, W. T. Holladay and C. M. Criss, J. Solution Chem., 1984, 13, 699 CAS.
  8. J. G. Mathieson and B. E. Conway, J. Chem. Soc., Faraday Trans. 1, 1974, 70, 752 RSC.
  9. J. G. Mathieson and B. E. Conway, J. Solution Chem., 1974, 3, 455 CAS.
  10. K. S. Pitzer, in Activity Coefficients in Electrolyte Solutions, ed. K. S. Pitzer, CRC Press, Boca Raton, FL, 2nd edn., 1991, ch. 3 Search PubMed.
  11. K. S. Pitzer, Thermodynamics, McGraw-Hill, New York, 3rd edn., 1995, ch. 17 and 18 Search PubMed.
  12. J. Ananthaswamy and G. Atkinson, J. Chem. Eng. Data, 1984, 29, 81 CrossRef CAS.
  13. S. Wolfram, Mathematica: a System for Doing Mathematics by Computer, Addison-Wesley, New York, 2nd edn., 1991 Search PubMed.
  14. M. J. Blandamer, Chem. Soc. Rev., 1998, 27, 73 RSC.
  15. M. J. Blandamer, J. Chem. Soc., Faraday Trans., 1998, 94, 1057 RSC.
  16. L. H. Laliberté and B. E. Conway, J. Phys. Chem., 1970, 74, 4116 CrossRef.
  17. J. Singh, T. Kaur, V. Ali and D. S. Gill, J. Chem. Soc., Faraday Trans., 1994, 90, 579 RSC.
  18. R. Buwalda, J. B. F. N. Engberts, H. Høiland and M. J. Blandamer, J. Phys. Org. Chem., 1998, 11, 59 CrossRef CAS.
  19. F. J. Millero, G. K. Ward and P. V. Chetirkin, J. Acoust. Soc. Am., 1977, 61, 1492 CAS.
  20. A. Lo Surdo and F. J. Millero, J. Phys. Chem., 1980, 84, 710 CrossRef CAS.
  21. F. J. Millero, J. Ricco and D. R. Schreiber, J. Solution Chem., 1982, 11, 671 CrossRef CAS.
  22. F. J. Millero, F. Vinokurova, M. Fernandez and J. P. Hershey, J. Solution Chem., 1987, 16, 269 CrossRef CAS.
  23. N. Rohman and S. Mahiuddin, J. Chem. Soc., Faraday Trans., 1997, 93, 2053 RSC.
  24. B. B. Owen and H. L. Simons, J. Phys. Chem., 1957, 61, 479 CrossRef CAS.
  25. J. C. R. Reis, J. Chem. Soc., Faraday Trans. 2, 1982, 78, 1595 RSC.
  26. J. E. Desnoyers, C. De Visser, G. Perron and P. Picker, J. Solution Chem., 1976, 9, 605 CrossRef.
  27. G. S. Kell, J. Chem. Eng. Data, 1975, 20, 97 CrossRef CAS.
  28. V. A. Del Grosso and C. W. Mader, J. Acoust. Soc. Am., 1972, 52, 1442 CAS.
  29. L. M. Connaughton, J. P. Hershey and F. J. Millero, J. Solution Chem., 1986, 15, 989 CAS.
  30. J-L. Fortier, P. A. Leduc and J. E. Desnoyers, J. Solution Chem., 1974, 3, 323 CAS.
  31. G. Perron, J-L. Fortier and J. E. Desnoyers, J. Chem. Thermodyn., 1975, 7, 1177 CAS.
  32. G. Perron, A. Roux and J. E. Desnoyers, Can. J. Chem., 1981, 59, 3049 CAS.
  33. C-T. Chen, L-S. Chen and F. J. Millero, J. Acoust. Soc. Am., 1978, 63, 1795 CAS.
  34. F. T. Gucker, D. Stubley and D. J. Hill, J. Chem. Thermodyn., 1975, 7, 865 CrossRef.
  35. A. Lo Surdo, E. M. Alzola and F. J. Millero, J. Chem. Thermodyn., 1982, 14, 649 CrossRef.
  36. G. Onori, J. Chem. Phys., 1988, 89, 510 CrossRef CAS.
  37. P. S. Z. Rogers and K. S. Pitzer, J. Phys. Chem. Ref. Data, 1982, 11, 15 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.