Photodissociation dynamics of carbonyl chloride fluoride and its implications for phosgene three body decay

(Note: The full text of this document is currently only available in the PDF Version )

Christof Maul, Christoph Dietrich, Tobias Haas and Karl-Heinz Gericke


Abstract

The photodissociation dynamics of COFCl has been studied by monitoring Cl fragments by resonance enhanced multi-photon ionisation and time-of-flight techniques at dissociation wavelengths near 235 nm. The COFCl heat of formation and the dissociation energy for C–Cl bond fission were for the first time experimentally determined: ΔfH00 (COFCl)=-397±15 kJ mol-1 and D0(COF–Cl)=364±8 kJ mol-1. 35% of the available energy is channelled into FCO rotation and bending vibration. The remaining energy is released as product translation. Other than in phosgene, no spin–orbit state selective behaviour is observed. The observations agree with a decay mechanism within the COFCl molecular plane as well as with a fragmentation via out-of-plane movement of the departing Cl atom. The structural and electronic similarity of COFCl and COCl2 allows conclusions to be drawn on the COCl2 dissociation. The findings are evidence for a previously proposed decay mechanism for the asynchronous concerted three body decay of phosgene into CO+2Cl. The first bond cleavage produces ground and excited spin–orbit state Cl and Cl*, respectively, with large kinetic energy release, while breaking the second C–Cl bond exclusively generates slow ground state Cl atoms.


References

  1. T. A. Ryan, C. Ryan, E. A. Seddon and K. R. Seddon, Phosgene and Related Carbonyl Halides, Elsevier, Amsterdam, 1996 Search PubMed.
  2. S. R. Wilson, P. J. Crutzen, G. Schuster, D. W. T. Griffith and G. Helas, Nature, 1988, 334, 689 CrossRef CAS.
  3. S. R. Wilson, G. Schuster and G. Helas, in Ozone in the Atmosphere, ed. R. D. Bojkov and P. Fabian, Deepak, Hampton, 1989, pp. 302–305 Search PubMed.
  4. F. Melen, E. Mahieu, R. Zander, C. P. Rinsland, P. Demoulin, G. Roland, L. Delbouille and C. Servais, J. Atmos. Chem., 1998, 29, 119 CrossRef CAS and references therein.
  5. G. Helas and S. R. Wilson, Atmos. Environ. A, 1992, 26, 2975.
  6. M. Kanakidou, F. J. Dentener and P. J. Crutzen, J. Geophys. Res., 1995, 100, D9, 18 871 CrossRef.
  7. T. P. Kindler, W. L. Chameides, P. H. Wine, D. M. Cunnold, F. N. Alyea and J. A. Franklin, J. Geophys. Res., 1995, 100, D1, 1235 CrossRef.
  8. C. Maul and K.-H. Gericke, Int. Rev. Phys. Chem., 1997, 16, 1 CrossRef CAS.
  9. C. Maul, T. Haas and K.-H. Gericke, J. Phys. Chem. A, 1997, 101, 6619 CrossRef CAS.
  10. C. Maul, T. Haas, K.-H. Gericke and F. J. Comes, J. Chem. Phys., 1995, 102, 3238 CrossRef CAS.
  11. NIST-JANAF Thermochemical Tables, ed. M. W. Chase Jr., J. Phys. Chem. Ref. Data, 1998, monograph 9 Search PubMed.
  12. M. Hermann, A. Nölle and H. Heydtmann, Chem. Phys. Lett., 1994, 226, 559 CrossRef CAS.
  13. A. Nölle, C. Krumscheid and H. Heydtmann, Chem. Phys. Lett., 1999, 299, 561 CrossRef CAS.
  14. I. Zanon, G. Giacometti and D. Picciol, Spectrochim. Acta, 1961, 19, 301 CrossRef.
  15. P. Sherwood, E. A. Seddon, M. F. Guest, M. J. Parkington, T. A. Ryan and K. R. Seddon, J. Chem. Soc., Dalton Trans., 1995, 2359 RSC.
  16. A. Nölle, H. Heydtmann, R. Meller and G. K. Moortgat, Geophys. Res. Lett., 1993, 20, 707.
  17. D. Gillotay, P. C. Simon and L. Dierickx, Aeron. Acta A, 1993, 368, 1 Search PubMed.
  18. D. C. Moule and P. D. Foo, J. Chem. Phys., 1971, 55, 1262 CAS.
  19. T. Haas, C. Maul, K.-H. Gericke and F. J. Comes, Chem. Phys. Lett., 1993, 108, 202.
  20. COFCl was synthesised and supplied by H. Willner, Hannover.
  21. S. Arepalli, N. Presser, R. Robie and R. Gordon, Chem. Phys. Lett., 1985, 118, 88 CrossRef CAS.
  22. C. Maul, Konkurrierende Dynamik beim Dreikörperzerfall von Molekülen, Wissenschafts-Verlag Dr. Maraun, Frankfurt, 1995 Search PubMed.
  23. Y. Matsumi, K. Tonokura and M. Kawasaki, J. Chem. Phys., 1992, 97, 1065 CrossRef CAS and references therein.
  24. X. S. Zhao, PhD Thesis, University of California Berkeley, 1992.
  25. T. J. Buckley, R. D. Johnson III, R. E. Huie, Z. Zhang, S. C. Kuo and R. B. Clemm, J. Phys. Chem., 1995, 99, 4879 CrossRef CAS.
  26. M. J. S. Dewar and H. S. Rzepa, J. Comput. Chem., 1983, 4, 158 CrossRef CAS.
  27. V. D. Knyazev, A. Benczura and I. R. Slagle, J. Phys. Chem. A, 1997, 101, 849 CrossRef CAS.
  28. D. A. Dixon and D. Feller, J. Phys. Chem. A, 1998, 102, 8209 CrossRef CAS.
  29. M. R. Zachariah, P. R. Westmoreland, D. R. Burgess Jr., W. Tsang and C. F. Melius, J. Phys. Chem. A, 1996, 100, 8737 Search PubMed.
  30. C. Maul, C. Dietrich, T. Haas, K.-H. Gericke, H. Tachikawa, S. Langford, M. Kono, C. L. Reed, R. N. Dixon and M. N. R. Ashfold, to be published.
  31. M. M. Maricq, J. J. Szente, Y. Su and J. S. Francisco, J. Chem. Phys., 1994, 100, 8673 CrossRef CAS.
  32. T. Krossner, L. Zülicke, R. Vetter, M. Perec and S. D. Peyerimhoff, J. Chem. Phys., 1994, 101, 3973 CrossRef CAS.
  33. T. Krossner, M. Peric, R. Vetter and S. D. Peyerimhoff, J. Chem. Phys., 1994, 101, 3981 CrossRef CAS.
  34. K. Nagai, C. Yamada, Y. Endo and E. Hirota, J. Mol. Spectrosc., 1981, 90, 249 CrossRef CAS.
  35. M. E. Jacox, J. Mol. Spectrosc., 1980, 80, 257 CrossRef CAS.
  36. N. Heineking, W. Jäger and M. C. L. Gerry, J. Mol. Spectrosc., 1993, 158, 69 CrossRef CAS.
  37. C. E. M. Strauss and P. L. Houston, J. Phys. Chem., 1990, 94, 8751 CrossRef CAS.
  38. Y. Matsumi, K. Tonokura, M. Kawasaki, G. Inoue, S. Satyapal and R. Bersohn, J. Chem. Phys., 1992, 97, 5261 CrossRef.
  39. H. M. Lambert, P. J. Dagdigian and M. H. Alexander, J. Chem. Phys., 1998, 108, 4460 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.