1H NMR and thermodynamic study of self-association and complex formation equilibria by hydrogen bonding. Methanol with chloroform or halothane

(Note: The full text of this document is currently only available in the PDF Version )

Marcela Tkadlecová, Vladimír Dohnal and Miguel Costas


Abstract

Mixtures of methanol with two strong proton donors, chloroform and halothane (2-bromo-2-chloro-1,1,1-trifluoroethane), were studied. The behaviour of these systems is governed by aggregate formation through H-bonding, where methanol self-association and its complex formation with the proton donors compete. In order to obtain information about these aggregate formation equilibria, 1H NMR chemical shifts of the chloroform or halothane proton and of the hydroxy proton of methanol were measured as a function of concentration and temperature. The NMR data are expressed in the form of a new quantity, defined in this work, the relative change of the chemical shift. This quantity is convenient because it gives directly the extent of H-bonding without containing any NMR-specific parameter. The NMR data and the excess thermodynamic functions from the literature (GE or ln γi, HE and CPE) were analysed using simple models of athermal association, amended by physical or thermal terms estimated on the basis of coupled homomorph and solution-of-groups approaches. Three particular models were tested, two of continuous methanol association (from tetramers to infinite size species) and one model that considers only methanol tetramerization. For the three models, methanol self-association parameters were previously obtained from independent data. Using enthalpy of solvation values obtained from quantum mechanical calculations, the equilibrium constant for the formation of methanol–chloroform and methanol–halothane complexes was the only fitted parameter. The continuous association models failed to fit the present data even qualitatively, whereas the tetramerization model gave reasonable agreement with experiment both for NMR and the excess thermodynamic functions. In accordance with previously studied mixtures of chloroform and halothane with oxygenated compounds, the methanol–halothane complex is found to be stronger than the methanol–chloroform complex; this is due to a more acidic hydrogen atom in halothane than in chloroform.


References

  1. V. Dohnal and M. Costas, J. Solution Chem., 1996, 25, 635 CAS.
  2. V. Dohnal, D. Fenclová, M. Bureš and M. Costas, J. Chem. Soc., Faraday Trans., 1993, 89, 1025 RSC.
  3. V. Dohnal, K. Kratochvilová, M. Bureš and M. Costas, J. Chem. Soc., Faraday Trans., 1996, 92, 1877 RSC.
  4. M. Tkadlecová, J. Havlíček and V. Dohnal, Can. J. Chem., 1995, 73, 1406 CAS.
  5. M. Goral, G. Kolasinska and P. Oracz, Int. DATA Ser., Sel. Data Mixtures, Ser. A, 1985, 209 Search PubMed.
  6. I. Nagata and K. Tamura, Fluid Phase Equilib., 1983, 15, 67 CrossRef CAS.
  7. D. Fenclová, V. Dohnal, S. Perez-Casas, C. Frigolet and M. Costas, Int. Electron. J. Phys.-Chem. Data, 1995, 1, 217 Search PubMed.
  8. D. Fenclová and V. Dohnal, Int. DATA Ser., Sel. Data Mixtures, Ser. A, 1993, 21, 85 Search PubMed.
  9. M. Costas, Int. DATA Ser., Sel. Data Mixtures, Ser. A, 1993, 21, 154 Search PubMed.
  10. A. M. Karachewski, M. M. McNiel and C. A. Eckert, Ind. Eng. Chem. Res., 1989, 28, 315 CrossRef CAS.
  11. A. M. Karachewski, W. J. Howell and C. A. Eckert, AIChE J., 1991, 37, 65 CAS.
  12. D. S. Abrams and J. M. Prausnitz, AIChE J., 1975, 21, 116 CrossRef CAS.
  13. D. Fenclová, V. Dohnal, M. Costas and D. Patterson, Fluid Phase Equilib., 1990, 57, 119 CrossRef CAS.
  14. H. A. Gutowsky and A. Saike, J. Chem. Phys., 1953, 21, 1688 CrossRef CAS.
  15. G. M. Wilson and C. H. Deal, Ind. Eng. Chem. Fundam., 1962, 1, 20 Search PubMed.
  16. T. G. Bissell and A. G. Williamson, J. Chem. Thermodyn., 1975, 7, 131 CAS.
  17. D. Fenclová and V. Dohnal, J. Chem. Thermodyn., 1993, 25, 689 CrossRef CAS.
  18. B. R. Sharma, G. S. Pundeer and P. P. Singh, Thermochim. Acta, 1975, 11, 105 CrossRef CAS.
  19. M. Costas, S. Perez-Casas, V. Dohnal and D. Fenclová, Thermochim. Acta, 1993, 213, 23 CrossRef CAS.
  20. V. Dohnal, M. Costas and D. Fenclová, Thermochim. Acta, 1993, 214, 183 CrossRef CAS.
  21. V. Dohnal, R. Holub and J. Pick, Fluid Phase Equilib., 1981, 6, 61 CrossRef CAS.
  22. A. Bondi, Physical Properties of Molecular Crystals, Liquids and Gases, Wiley, New York, 1968, pp. 450–468 Search PubMed.
  23. L. Andreoli-Ball, D. Patterson, M. Costas and M. Caceres-Alonso, J. Chem. Soc., Faraday Trans., 1988, 84, 3991 Search PubMed.
  24. M. J. S. Dewar, E. G. Zoebish, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
  25. I. Prigogine and R. Defay, Chemical Thermodynamics, Longmans Green, London, 1962, pp. 432–434 Search PubMed.
  26. A. J. Treszczanowicz and T. Treszczanowicz, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1981, 29, 269 Search PubMed.
  27. A. J. Treszczanowicz and T. Treszczanowicz, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1975, 23, 169 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.