Nearside–farside analysis of state-selected differential cross sections for reactive molecular collisions

(Note: The full text of this document is currently only available in the PDF Version )

Abigail J. Dobbyn, P McCabe, J N. L. Connor and Jesus F. Castillo


Abstract

The usual theoretical procedure for evaluating the differential cross section (DCS) of a molecular collision consists of numerically summing a partial wave series (PWS) for the scattering amplitude. The PWS typically has many numerically significant terms making it difficult (or impossible) to gain physical insight into the origin of structure in a DCS. A nearside–farside (NF) analysis of a DCS decomposes the PWS scattering amplitude into two subamplitudes: one nearside, the other farside. This decomposition is successful if the magnitudes of the two subamplitudes are never much greater than that of the scattering amplitude itself. It is then often possible to gain a clear physical picture of the origin of structure in a DCS, and hence obtain information on the collision dynamics. A new NF theory called the restricted NF decomposition is described. We present the first application of this NF decomposition to reactive molecular collisions whose PWS are expanded in a basis set of reduced rotation matrix elements. The reactions whose DCSs we NF analyze are: F+H2→FH+H, F+HD→FH+D (or FD+H) and H+D2→HD+D. Exact quantum scattering matrix elements are employed as input to the NF analyses. DCSs are also computed using a simple semiclassical optical model. We demonstrate that the restricted NF decomposition provides valuable physical insights into the structured angular distributions of these three chemical reactions. Applications of NF methods to elastic and inelastic molecular angular scattering are also described.


References

  1. J. N. L. Connor, in Semiclassical Methods in Molecular Scattering and Spectroscopy, Proceedings of the NATO Advanced Study Institute, Cambridge, September 1979, ed. M. S. Child, Reidel, Dordrecht, 1980, pp. 45–107 Search PubMed.
  2. J. N. L. Connor, J. Chem. Soc., Faraday Trans., 1990, 86, 1627 RSC.
  3. M. S. Child, Semiclassical Mechanics with Molecular Applications, Clarendon Press, Oxford, 1991 Search PubMed.
  4. D. Sokolovski, J. N. L. Connor and G. C. Schatz, Chem. Phys. Lett., 1995, 238, 127 CrossRef CAS.
  5. D. Sokolovski, J. N. L. Connor and G. C. Schatz, J. Chem. Phys., 1995, 103, 5979 CrossRef CAS.
  6. J. N. L. Connor, P. McCabe, D. Sokolovski and G. C. Schatz, Chem. Phys. Lett., 1993, 206, 119 CrossRef CAS.
  7. P. McCabe and J. N. L. Connor, J. Chem. Phys., 1996, 104, 2297 CrossRef CAS.
  8. P. McCabe, J. N. L. Connor and D. Sokolovski, J. Chem. Phys., 1998, 108, 5695 CrossRef CAS.
  9. P. McCabe, J. N. L. Connor and D. Sokolovski, Nearside–farside analysis of differential cross sections using Jacobi functions of the first and second kinds: Application to Ar + N2 rotationally inelastic scattering, to be published Search PubMed.
  10. M. S. Hussein and K. W. McVoy, Prog. Part. Nucl. Phys., 1984, 12, 103 CrossRef CAS.
  11. D. M. Brink, Semiclassical Methods for Nucleus–Nucleus Scattering, Cambridge University Press, Cambridge, 1985 Search PubMed.
  12. J. F. Castillo, D. E. Manolopoulos, K. Stark and H.-J. Werner, J. Chem. Phys., 1996, 104, 6531 CrossRef CAS.
  13. J. F. Castillo, B. Hartke, H.-J. Werner, F. J. Aoiz, L. Bañares and B. Martínez-Haya, J. Chem. Phys., 1998, 109, 7224 CrossRef CAS.
  14. J. F. Castillo and D. E. Manolopoulos, Faraday Discuss. Chem. Soc., 1998, 110, 119 RSC.
  15. M. P. de Miranda, D. C. Clary, J. F. Castillo and D. E. Manopolopoulos, J. Chem. Phys., 1998, 108, 3142 CrossRef CAS.
  16. K. Stark and H.-J. Werner, J. Chem. Phys., 1996, 104, 6515 CrossRef CAS.
  17. P. Siegbahn and B. Liu, J. Chem. Phys., 1978, 68, 2457 CrossRef CAS.
  18. D. G. Truhlar and C. J. Horowitz, J. Chem. Phys., 1978, 68, 2466 CrossRef CAS.
  19. D. G. Truhlar and C. J. Horowitz, J. Chem. Phys., 1979, 71, 1514 CrossRef.
  20. D. Sokolovski, J. N. L. Connor and G. C. Schatz, Chem. Phys., 1996, 207, 461 CrossRef CAS.
  21. R. C. Fuller, Phys. Rev. C, 1975, 12, 1561 CrossRef CAS.
  22. P. J. Hatchell, Phys. Rev. C, 1989, 40, 27 CrossRef CAS.
  23. J. J. Hollifield and J. N. L. Connor, Phys. Rev. A, 1999, 59, 1694 CrossRef CAS.
  24. J. J. Hollifield and J. N. L. Connor, Mol. Phys., 1999, in the press Search PubMed.
  25. A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University Press, Princeton, 2nd edn., third printing with corrections, 1974 Search PubMed.
  26. J. Wimp, P. McCabe and J. N. L. Connor, J. Comput. Appl. Math., 1997, 82, 447 CrossRef.
  27. D. R. Herschbach, Appl. Opt. Suppl., 1965, 2, 128 Search PubMed.
  28. D. R. Herschbach, Adv. Chem. Phys., 1966, 10, 319 CAS.
  29. J. L. Kinsey, G. H. Kwei and D. R. Herschbach, J. Chem. Phys., 1976, 64, 1914 CrossRef CAS.
  30. G. H. Kwei and D. R. Herschbach, J. Phys. Chem., 1979, 83, 1550 CAS.
  31. M. L. Vestal, A. L. Wahrhaftig and J. H. Futrell, J. Phys. Chem., 1976, 80, 2892 CrossRef CAS.
  32. M. A. Collins and R. G. Gilbert, Chem. Phys. Lett., 1976, 41, 108 CrossRef CAS.
  33. S. M. McPhail and R. G. Gilbert, Chem. Phys., 1978, 34, 319 CrossRef CAS.
  34. N. Agmon, Chem. Phys., 1981, 61, 189 CrossRef CAS.
  35. N. Agmon, Int. J. Chem. Kinet., 1986, 18, 1047 CrossRef CAS.
  36. R. E. Wyatt, J. F. McNutt and M. J. Redmon, Ber. Bunsen-ges. Phys. Chem., 1982, 86, 437 Search PubMed.
  37. G. C. Schatz, B. Amaee and J. N. L. Connor, Comput. Phys. Commun., 1987, 47, 45 CrossRef CAS.
  38. G. C. Schatz, B. Amaee and J. N. L. Connor, J. Phys. Chem., 1988, 92, 3190 CrossRef CAS.
  39. G. C. Schatz, B. Amaee and J. N. L. Connor, J. Chem. Phys., 1990, 93, 5544 CrossRef CAS.
  40. G. C. Schatz, D. Sokolovski and J. N. L. Connor, Faraday Discuss. Chem. Soc., 1991, 91, 17 RSC.
  41. D. M. Neumark, A. M. Wodtke, G. N. Robinson, C. C. Hayden and Y. T. Lee, J. Chem. Phys., 1985, 82, 3045 CrossRef CAS.
  42. M. J. Redmon and R. E. Wyatt, Chem. Phys. Lett., 1979, 63, 209 CrossRef CAS.
  43. J. Jellinek, M. Baer and D. J. Kouri, Phys. Rev. Lett., 1981, 47, 1588 CrossRef CAS.
  44. R. W. Emmons and S. H. Suck, Phys. Rev. A, 1982, 25, 178 CrossRef CAS.
  45. J. N. L. Connor, W. Jakubetz, J. Manz and J. C. Whitehead, Chem. Phys., 1979, 39, 395 CrossRef CAS.
  46. N. C. Blais and D. G. Truhlar, J. Chem. Phys., 1982, 76, 4490 CrossRef CAS.
  47. S. Ron, M. Baer and E. Pollak, J. Chem. Phys., 1983, 78, 4414 CrossRef CAS.
  48. T. Takayanagi and S. Sato, Chem. Phys. Lett., 1988, 144, 191 CrossRef CAS.
  49. F. J. Aoiz, L. Bañares, V. J. Herrero and V. Sáez Rábanos, Chem. Phys. Lett., 1994, 218, 422 CrossRef CAS.
  50. F. J. Aoiz, L. Bañares, V. J. Herrero and V. Sáez Rábanos, Chem. Phys., 1994, 187, 227 CrossRef CAS.
  51. F. J. Aoiz, L. Bañares, V. J. Herrero, V. Sáez Rábanos, K. Stark and H.-J. Werner, Chem. Phys. Lett., 1994, 223, 215 CrossRef CAS.
  52. D. E. Manolopoulos, J. Chem. Soc., Faraday Trans., 1997, 93, 673 RSC.
  53. C. L. Russell and D. E. Manolopoulos, Chem. Phys. Lett., 1996, 256, 465 CrossRef.
  54. D. M. Neumark, A. M. Wodtke, G. N. Robinson, C. C. Hayden, R. Schobatake, R. K. Sparks, T. P. Schafer and Y. T. Lee, J. Chem. Phys., 1985, 82, 3067 CrossRef CAS.
  55. F. J. Aoiz, L. Bañares, V. J. Herrero, V. Sáez Rábanos, K. Stark and H.-J. Werner, J. Chem. Phys., 1995, 102, 9248 CrossRef CAS.
  56. H. Buchenau, J. P. Toennies, J. Arnold and J. Wolfrum, Ber. Bunsen-Ges. Phys. Chem., 1990, 94, 1231 Search PubMed.
  57. W. H. Miller, Annu. Rev. Phys. Chem., 1990, 41, 245 CrossRef CAS.
  58. F. J. Aoiz, L. Bañares, M. J. D'Mello, V. J. Herrero, V. Sáez Rábanos, L. Schnieder and R. E. Wyatt, J. Chem. Phys., 1994, 101, 5781 CrossRef CAS.
  59. L. Schnieder, K. Seekamp-Rahn, J. Borkowski, E. Wrede, K. H. Welge, F. J. Aoiz, L. Bañares, M. J. D'Mello, V. J. Herrero, V. Sáez Rábanos and R. E. Wyatt, Science, 1995, 269, 207 CrossRef CAS.
  60. G. C. Schatz and A. Kuppermann, J. Chem. Phys., 1976, 65, 4668 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.