Partitioning dynamic and thermal factors in quantum rate calculations: a coherent state approach

(Note: The full text of this document is currently only available in the PDF Version )

Joachim Ankerhold, Frank Grossmann and David J. Tannor


Abstract

At the heart of the search for a quantum transition state theory is the partitioning of dynamic from thermal factors in the quantum rate expression. We explore the possibility of achieving an approximate partitioning by using the coherent state basis. The coherent states provide a tetradic representation of both the dynamic and thermal factors; the degree to which these factors partition is tied to the degree to which one or both of the tetradics is diagonal, and hence phase space localized. We find that for the dynamical factor the off-diagonal contributions are small, except for matrix elements between coherent states positioned anywhere along the stable branch of the classical separatrix. The thermal factor is nearly diagonal at high temperatures, but has significant off-diagonal contributions at low temperatures. As a result, at high temperatures the thermal factor cuts off long range correlation, leading to the classical limit. At low temperatures, there is a subtle interplay of the thermal and dynamical factors, with the long range off-diagonal portions of the thermal factor combining with the long range off-diagonal portions of the dynamical factor. This phase space picture sheds light on the physical assumptions underlying several commonly applied approximations for calculating thermal reaction rates. In particular, by elucidating the subtlety of the contributions to the low temperature rate it becomes clear why a simple, yet accurate, estimate of the rate in this regime is elusive, if not impossible.


References

  1. E. Pollak and J.-L. Liao, J. Chem. Phys., 1998, 108, 2733 CrossRef CAS.
  2. E. Pollak, J. Chem. Phys., 1997, 107, 64 CrossRef CAS; J. Shao, J.-L. Liao and E. Pollak, J. Chem. Phys., 1998, 108, 9711 CrossRef CAS; E. Pollak and B. Eckhardt, Phys. Rev. E, 1998, 58, 5436 CrossRef CAS.
  3. H. Wang, X. Sun and W. H. Miller, J. Chem. Phys., 1998, 108, 9726 CrossRef CAS; X. Sun, H. Wang and W. H. Miller, J. Chem. Phys., 1998, 109, 4190 CrossRef CAS.
  4. D. H. Zhang and J. C. Light, J. Chem. Phys., 1997, 106, 551 CrossRef CAS; H. Wang, W. H. Thompson and W. H. Miller, J. Chem. Phys., 1997, 107, 7194 CrossRef CAS; F. Matzkies and U. Manthe, J. Chem. Phys., 1998, 108, 4828 CrossRef CAS.
  5. J. S. Langer, Ann. Phys. (NY), 1967, 41, 108 Search PubMed; H. Grabert, P. Olschowski and U. Weiss, Phys. Rev. B, 1987, 36, 1931 CrossRef.
  6. G. A. Voth, D. Chandler and W. H. Miller, J. Chem. Phys., 1989, 91, 7749 CrossRef CAS; G. K. Schenter, M. Messina and B. C. Garrett, J. Chem. Phys., 1993, 99, 1674 CrossRef CAS.
  7. P. Hänggi, P. Talkner and M. Borkovec, Rev. Mod. Phys., 1990, 62, 251 CrossRef and references therein.
  8. G. A. Voth, D. Chandler and W. H. Miller, J. Phys. Chem., 1989, 93, 7009 CrossRef CAS.
  9. J. Ankerhold, H. Grabert and G. L. Ingold, Phys. Rev. E, 1995, 51, 4267 CrossRef CAS; J. Ankerhold and H. Grabert, Ibid., 1995, 52, 4704 Search PubMed; Ibid., 1997, 55, 1355 Search PubMed; Chem. Phys., 1996, 204, 27 Search PubMed.
  10. J. Ankerhold and H. Grabert, to be published.
  11. W. H. Miller, S. D. Schwartz and J. W. Tromp, J. Chem. Phys., 1983, 79, 4889 CrossRef CAS.
  12. E. Wigner, Z. Phys. Chem. B, 1932, 19, 203 Search PubMed.
  13. E. J. Heller, J. Chem. Phys., 1976, 65, 1289 CrossRef CAS.
  14. W. H. Miller, J. Chem. Phys., 1974, 61, 1823 CrossRef CAS.
  15. F. J. McLafferty and P. Pechukas, Chem. Phys. Lett., 1974, 27, 511 CrossRef CAS.
  16. H. A. Kramers, Physica, 1940, 7, 284 Search PubMed.
  17. W. H. Louisell, Quantum Statistical Properties of Radiation, Wiley, New York, 1990 Search PubMed.
  18. E. J. Heller, in Les Houches Session LII, Chaos and Quantum Physics, ed. M. J. Giannoni, A. Voros and J. Zinn-Justin, Elsevier, Amsterdam, 1991 Search PubMed.
  19. F. Grossmann, Comments At. Mol. Phys., in press Search PubMed.
  20. S. Caratzoulas and P. Pechukas, J. Chem. Phys., 1996, 104, 6265 CrossRef CAS.
  21. R. P. Feynman, Statistical Mechanics, Addison-Wesley, Reading, MA, 1998 Search PubMed.
  22. None that the overlap factor 〈[z with combining tilde]pő, qő= 0; α∥[z with combining tilde]po, qo; α〉 does not change if we perform a time propagation on both the bra and the ket. Then our exact expression (29) indicates that there are regimes in which the approximation leading to eqn. (2.11b) in the second paper of ref. 3 may be expected to break down.
  23. C. Eckart, Phys. Rev., 1930, 35, 1303 CrossRef CAS.
  24. M. D. Feit, J. A. Fleck and A. J. Steiger, Comput. Phys., 1982, 47, 412 CAS.
  25. G. Wahnström and H. Metiu, J. Phys. Chem., 1988, 92, 3240 CrossRef CAS.
  26. J. Ankerhold and H. Grabert, Physica A, 1992, 188, 568 CrossRef; F. J. Weiper, J. Ankerhold and H. Grabert, J. Chem. Phys., 1996, 104, 7526 CrossRef CAS.
  27. W. H. Miller, J. Chem. Phys., 1974, 62, 1899 CrossRef CAS.
  28. P. Hänggi and W. Hontscha, J. Chem. Phys., 1988, 88, 4094 CrossRef CAS.
  29. S. Keshavamurty and W. H. Miller, Chem. Phys. Lett., 1994, 218, 189 CrossRef CAS.
  30. F. Grossmann and E. J. Heller, Chem. Phys. Lett., 1995, 241, 45 CrossRef CAS.
  31. N. T. Maitra and E. J. Heller, Phys. Rev. Lett., 1997, 78, 3035 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.