Organic molecular beam deposition: technology and applications in electronics and photonics Invited Lecture

(Note: The full text of this document is currently only available in the PDF Version )

Wolfgang Kowalsky, Torsten Benstem, Achim Böhler, Siegfried Dirr, Hans-Hermann Johannes, Dirk Metzdorf, Helge Neuner, Jörg Schöbel and Peter Urbach


Abstract

Organic semiconductors have been intensively studied over the past decades. The potential of this new class of materials for photonic and electronic device applications is demonstrated by successful fabrication of organic and organic-on-inorganic heterostructures for electroluminescent devices, photodetectors, and microwave diodes. The fabrication technology of organic semiconductor devices for both electronic and photonic applications is discussed. In contrast to spin-on or dipping techniques for fabrication of polymeric films, organic compounds with low molecular weight are sublimated under ultra high vacuum (UHV) conditions. The organic molecular beam deposition (OMBD) technology employed allows the reproducible growth of complex layer sequences with a defined thickness of various organic semiconductors in combination with dielectric films, different metallizations, and indium–tin oxide layers. Growth rates from 1–5 nm min-1 and substrate temperatures from 77 to 350 K are used. Organic-on-inorganic heterostructure diodes based on crystalline thin PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) films on III–V semiconductors are investigated with regard to microwave applications with reduced forward voltage and high cut-off frequencies in the GHz regime. Secondly, efficient organic light emitting diodes with bright emission in the blue [1-AZM-Hex (N,N′-disalicylidene-1,6-hexanediaminate)zinc(II)], green, [Alq3 (tris(8-hydroxyquinoline)-aluminum)], and red (Eu complexes) spectral region and with low operation voltages are presented. In general an onset voltage of 2.7 V, efficiencies up to 7 lm W-1 and a luminance up to 2×105 cd m-2 (CW, RT) are attained for N,N′-diphenyl-quinacridone doped Alq3 devices. An undoped device can be operated up to 5000 h without any loss in brightness and just a small increase of the driving voltage of about 2 V. Embedding emissive organic thin films with a narrow spectral characteristic into planar Fabry–Perot microcavities, a light intensity enhancement and a spatial redistribution of the emission is achieved.


References

  1. C. Rompf, D. Ammermann and W. Kowalsky, J. Mater. Sci., 1995, 11, 845 CAS.
  2. S. R. Forrest, M. L. Kaplan and P. H. Schmidt, J. Appl. Phys., 1984, 55, 1492 CrossRef CAS.
  3. M. Stolka, J. F. Yanus and D. M. Pai, J. Phys. Chem., 1984, 88, 4707 CrossRef CAS.
  4. Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami and K. Imai, Appl. Phys. Lett., 1994, 56, 807 CrossRef CAS.
  5. P. Urbach, C. RompfD. Ammermann and W. Kowalsky, SSDM '95, Osaka, Japan, 1995, 401 Search PubMed.
  6. P. Urbach, D. Ammermann and W. Kowalsky, SSDM '96, Yokohama, Japan, 1996, 586 Search PubMed.
  7. B. DeLoach, IEEE MTT–S Int. Microwave Symp. Dig., 1964, 15 Search PubMed.
  8. Y. Yang, E. Westerweele, C. Zhang, P. Smith and A. J. Heeger, J. Appl. Phys., 1995, 77, 694 CrossRef CAS.
  9. C. W. Tang and S. A. VanSlyke, J. Appl. Phys., 1989, 65, 3610 CrossRef CAS.
  10. Y. Hamada, T. Samo, K. Shibata and K. Kuroki, Jpn. J. Appl. Phys., 1995, 34, 824 CrossRef CAS.
  11. D. Ammermann, A. Böhler, C. Rompf and W. Kowalsky, Proc. IEE/LEOS Summer Topical Meeting on Flat Panel Display Technology., Keystone, CO, USA, 1995, 31 Search PubMed.
  12. M. Cardona and L. Ley. Photoemission in Solids, Tropics in Appl. Phys. 26, Springer-Verlag, Berlin–Heidelberg–New York, 1978 Search PubMed.
  13. D. Briggs, Handbook of X-Ray and Ultraviolet Photoelectron Spectroscopy, Heyden and Son, London, 1978.
  14. A. Schmidt, M. L. Anderson and N. R. Armstrong, J. Appl. Phys., 1995, 78, 5619 CrossRef.
  15. K. Seki, T. Tani and H. Ishii, Thin Solid Films, 1996, 273, 20 CrossRef CAS.
  16. A. Rajagopal, C. I. Wu and A. Kahn, J. Appl. Phys., 1998, 83, 2649 CrossRef CAS.
  17. S. Miyata and H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Publishers, 1997 Search PubMed.
  18. T. Tsutui, N. Takada and S. Saito, Appl. Phys. Lett., 1994, 64, 1868 CrossRef CAS.
  19. T. Sano, M. Fuyita, T. Fujii and Y. Hamada, Jpn. J. Appl. Phys., 1995, 34, 1883 CrossRef CAS.
  20. T. Tsutui, N. Takada and S. Saito, Appl. Phys. Lett., 1993, 63, 2032 CrossRef.
  21. A. Dodalapur, L. J. Rothberg and T. M. Miller, Appl. Phys. Lett., 1994, 65, 2308 CrossRef.
  22. T. Tsutsui, C. Adachi, S. Saito, M. Watanabe and M. Koishi, Chem. Phys. Lett., 1991, 182, 143 CrossRef CAS.
  23. T. Nakayama, Y. Itoh and A. Kakuta, Appl. Phys. Lett., 1993, 63, 594 CrossRef CAS.
  24. T. Takada, T. Tsutsui and S. Saito, Appl. Phys. Lett., 1993, 63, 2032 CrossRef.
  25. R. L. Moon, Proc. IS&T's 48th Annu. Conf., 1995, 386 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.