Regularity in chaotic reaction paths II: Ar6. Energy dependence and visualization of the reaction bottleneck

(Note: The full text of this document is currently only available in the PDF Version )

Tamiki Komatsuzaki and R Stephen Berry


Abstract

Reaction trajectories reveal regular behavior in the reactive degree of freedom and unit transmission coefficients as the system crosses the saddle region separating reactants and products. The regularity persists up to moderately high energies, even when all other degrees of freedom are chaotic. This behavior is apparent in a representation obtained by transformation with Lie canonical perturbation theory. The dividing surface in this representation is analogous to the conventional dividing surface in the sense that it is the point set for which the reaction coordinate has the constant value it has at the saddle-point singularity. However the nonlinear, full phase-space character of the transformation makes the new crossing surface a complicated, abstract object whose interpretation and visualization, the objective of this paper, can be realized by cataloging the recrossings as they disappear in successively higher orders of perturbation, and by projection into spaces of only a few dimensions. The result is a conceptual interpretation of how regular behavior persists in a reactive degree of freedom.


References

  1. E. R. Lovejoy, S. K. Kim and C. B. Moore, Science, 1992, 256, 1541 CAS; E. R. Lovejoy and C. B. Moore, J. Chem. Phys., 1993, 98, 7846 CrossRef CAS; S. K. Kim, E. R. Lovejoy and C. B. Moore, J. Chem. Phys., 1995, 102, 3202 CrossRef CAS.
  2. D. C. Chatfield, R. S. Friedman, D. G. Truhlar, B. C. Garrett and D. W. Schwenke, J. Am. Chem. Soc., 1991, 113, 486 CrossRef CAS.
  3. D. C. Chatfield, R. S. Friedman, D. G. Truhlar and D. W. Schwenke, Faraday Discuss. Chem. Soc., 1991, 91, 289 RSC.
  4. D. C. Chatfield, R. S. Friedman, G. C. Lynch, D. G. Truhlar and D. W. Schwenke, J. Chem. Phys., 1993, 98, 342 CrossRef CAS.
  5. R. A. Marcus, Science, 1992, 256, 1523 CAS.
  6. D. J. Wales and R. S. Berry, J. Phys. B, 1991, 24, L351 CrossRef CAS.
  7. R. J. Hinde, R. S. Berry and D. J. Wales, J. Chem. Phys., 1992, 96, 1376 CrossRef CAS.
  8. C. Amitrano and R. S. Berry, Phys. Rev. Lett., 1992, 68, 729 CrossRef; Phys. Rev. E, 1993, 47, 3158 Search PubMed.
  9. R. J. Hinde and R. S. Berry, J. Chem. Phys., 1993, 99, 2942 CrossRef CAS.
  10. R. S. Berry, Chem. Rev., 1993, 93, 237.
  11. R. S. Berry, Int. J. Quantum Chem., 1996, 58, 657 CrossRef CAS.
  12. K. Ball, R. S. Berry, R. E. Kunz, F-Y. Li, A. Proykova and D. J. Wales, Science, 1996, 271, 963 CrossRef CAS.
  13. S. K. Nayak, P. Jena, K. D. Ball and R. S. Berry, J. Chem. Phys., 1998, 108, 234 CrossRef CAS.
  14. T. Komatsuzaki and M. Nagaoka, J. Chem. Phys., 1996, 105, 10838 CrossRef CAS.
  15. T. Komatsuzaki and M. Nagaoka, Chem. Phys. Lett., 1997, 265, 91 CrossRef CAS.
  16. T. Komatsuzaki and R. S. Berry, 1998 submitted for publication.
  17. T. Komatsuzaki and R. S. Berry, J. Chem. Phys., 1999, in the press Search PubMed.
  18. Recent reviews are D. G. Truhlar, B. C. Garrett and S. J. Kippenstein, J. Phys. Chem., 1996, 100, 12771 Search PubMed; D. C. Chatfield, R. S. Friedman, S. L. Mielke, G. C. Lynch, T. C. Allison, D. G. Truhlar and D. W. Schwenke, in Dynamics of Molecules and Chemical Reactions, ed. R. E. Wyatt and J. Z. Zhang, Marcel Dekker, New York, 1996, p. 323 CrossRef CAS.
  19. M. J. Davis and S. K. Gray, J. Chem. Phys., 1986, 84, 5389 CrossRef CAS.
  20. S. Wiggins, Normally Hyperbolic Invariant Manifolds in Dynamical Systems, Springer-Verlag, New York, 1991 Search PubMed.
  21. R. E. Gillian and G. S. Ezra, J. Chem. Phys., 1991, 94, 2648 CrossRef.
  22. M. Toda, Phys. Rev. Lett., 1995, 74, 2670 CrossRef CAS.
  23. M. Toda, Phys. Lett. A, 1997, 227, 232 CrossRef CAS.
  24. A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics, Springer-Verlag, New York, 2nd edn., 1992 Search PubMed.
  25. J. R. Cary, Phys. Rep., 1981, 79, 130 CrossRef.
  26. L. E. Fried and G. S. Ezra, J. Phys. Chem., 1988, 92, 3144 CrossRef CAS.
  27. L. E. Fried and G. S. Ezra, J. Chem. Phys., 1987, 86, 6270 CrossRef CAS.
  28. L. E. Fried and G. S. Ezra, Comput. Phys. Commun., 1988, 51, 103 CrossRef CAS.
  29. J. C. Keck, Discuss. Faraday Soc., 1962, 33, 173 RSC.
  30. J. B. Anderson, J. Chem. Phys., 1973, 58, 4684 CAS.
  31. J. P. Bergsma, J. R. Reimers, K. R. Wilson and J. T. Hynes, J. Chem. Phys., 1986, 85, 5625 CrossRef CAS.
  32. J. P. Bergsma, B. J. Gertner, K. R. Wilson and J. T. Hynes, J. Chem. Phys., 1987, 86, 1356 CrossRef CAS.
  33. B. J. Gertner, K. R. Wilson and J. T. Hynes, J. Chem. Phys., 1989, 90, 3537 CrossRef CAS.
  34. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes, Cambridge University, New York, 2nd edn., 1992 Search PubMed.
  35. One should be careful about the implication of S(q1= 0) in the phase space. Accessible values of p and q are restricted by total energy E. In any quasiregular region, even all the variables are confirmed to M-dimensional (local) tori. Thus, in stating that S[[q with combining macron]1(p, q)= 0] partially collapses onto S(q1= 0) in the phase space, the relevant regions of S(q1= 0) are not all of this surface determined by only q1 irrespective of the other variables, but only parts of a hypersurface where q1= 0, generally determined by p and q.
  36. P. Pechukas and E. Pollak, J. Chem. Phys., 1977, 67, 5976 CrossRef CAS; E. Pollak and P. Pechukas, J. Chem. Phys., 1978, 69, 1218 CrossRef CAS; E. Pollak and P. Pechukas, J. Chem. Phys., 1979, 70, 325 CrossRef CAS; E. Pollak, M. S. Child and P. Pechukas, J. Chem. Phys., 1980, 72, 1669 CrossRef CAS; M. S. Child and E. Pollak, J. Chem. Phys., 1980, 73, 4365 CrossRef CAS; E. Pollak, in The Theory of Chemical Reaction Dynamics, ed. D. C. Clary, NATO ASI Series C 170, Reidel, Dordrecht, 1985, p. 135 Search PubMed; E. Pollak, in Theory of Chemical Reaction Dynamics, ed. M. Baer, CRS Press, Boca Raton, Florida, 1986, p. 123 Search PubMed.
  37. J. C. Gower, Biometrica, 1968, 55, 582 Search PubMed.
  38. O. Becker and M. Karplus, J. Chem. Phys., 1997, 106, 1495 CrossRef CAS.
  39. N. Elmaci and R. S. Berry, submitted for publication.
  40. R. Hernandez and W. H. Miller, Chem. Phys. Lett., 1993, 214, 129 CrossRef CAS The transformation of (p, q) to action-angle variables in the transition state was first studied in semiclassical TST theories. See also W. H. Miller, Faraday Discuss. Chem. Soc., 1977, 62, 40 Search PubMed; T. Seideman and W. H. Miller, J. Chem. Phys., 1991, 95, 1768 RSC.
  41. K. Fukui, in The World of Quantum Chemistry, ed. R. Daudel and B. Pullman, Reidel, Dordrecht, 1974, p. 113 Search PubMed.
  42. C. F. Jackels, Z. Gu and D. G. Truhlar, J. Chem. Phys., 1995, 102, 3188 CrossRef CAS.
  43. J. Villà and D. G. Truhlar, Theor. Chem. Acc., 1997, 97, 317 CrossRef CAS.
  44. A. González-Lafont, J. Villà, J. M. Lluch, J. Bertrán, R. Steckler and D. G. Truhlar, J. Phys. Chem., 1998, 102, 3420 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.