Scroll waves in the Belousov–Zhabotinsky reaction: exploitation of O2-effect on the ferroin-catalysed system

(Note: The full text of this document is currently only available in the PDF Version )

Annette F. Taylor, Barry R. Johnson and Stephen K. Scott


Abstract

The inhibiting effect of dissolved oxygen on wave propagation in the ferroin-catalysed Belousov–Zhabotinsky (BZ) reaction is exploited to obtain three-dimensional scroll waves experimentally in this system. The development of the scrolls is monitored by imaging the wave evolution via a video camera and image acquisition software. Solutions for which the initial waves are initiated under an atmosphere of pure oxygen have a subexcitable or inhibited layer of typically 1 mm depth. Once the O2 is replaced by N2, this layer regains excitability and a scroll wave structure can develop. For waves initiated under air, the depth of the inhibited layer is less and scroll waves do not develop. A simple extension of the ZBKE model for the ferroin system is proposed and shown to predict the oxygen inhibition in reasonable agreement with experiment.


References

  1. Waves and Patterns in Chemical and Biological Media, ed. H. Swinney and V. Krinsky, Physica D, 1991, 49 Search PubMed.
  2. Chemical Waves and Patterns, ed. R. Kapral and K. Showalter, Kluwer, Dordrecht, 1995 Search PubMed.
  3. A. N. Zaikin and A. M. Zhabotinsky, Nature (London), 1970, 225, 535.
  4. A. T. Winfree, Forsk. Framsteg, 1971, 6, 9 Search PubMed.
  5. H. G. Pearlman, J. Chem. Soc., Faraday Trans., 1997, 93, 2487 RSC.
  6. S. K. Scott, J. Wang and K. Showalter, J. Chem. Soc., Faraday Trans., 1997, 93, 1733 RSC.
  7. A. L. Hodgkin and A. F. Huxley, J. Physiol., 1952, 117, 500 CAS.
  8. G. Gerisch, Naturwissenschaften, 1983, 58, 420.
  9. J. Lechleiter, S. Girard, E. Peralta and D. Clapham, Science, 1991, 252, 123 CrossRef CAS.
  10. A. Gorelova and J. Bures, J. Neurobiol., 1983, 14, 353 CrossRef.
  11. R. Imbihl and G. Ertl, Chem. Rev., 1995, 95, 697 CrossRef CAS.
  12. A. T. Winfree, Science, 1995, 270, 1224 CAS.
  13. J. P. Keener and J. J. Tyson, SIAM Rev., 1992, 34, 1 Search PubMed.
  14. A. T. Winfree and W. Jahnke, J. Phys. Chem., 1989, 93, 2823 CrossRef CAS.
  15. M. Yoneyama, Chem. Phys. Lett., 1996, 254, 191 CrossRef CAS.
  16. T. Amemiya, S. Kadar, P. Kettunen and K. Showalter, Phys. Rev. Lett., 1996, 77, 3244 CrossRef CAS.
  17. A. F. Taylor, B. R. Johnson and S. K. Scott, J. Chem. Soc., Faraday Trans., 1998, 94, 1029 RSC.
  18. H. Sevcikova and M. Marek, Physica D, 1989, 39, 15 CrossRef CAS.
  19. J. Ungvarai and Z. Nagy-Ungvarai, ACH-Models Chem., 1998, 135, 393 CAS.
  20. A. B. Rovinsky and A. M. Zhabotinsky, J. Phys. Chem., 1984, 88, 6081 CrossRef.
  21. A. M. Zhabotinsky, F. Buchholtz, A. B. Kiyatin and I. R. Epstein, J. Phys. Chem., 1993, 97, 7578 CrossRef CAS.
  22. B. R. Johnson, A. F. Taylor and S. K. Scott, J. Chem. Soc., Faraday Trans., 1997, 93, 3733 RSC.
  23. Z. Nagy-Ungvarai, J. J. Tyson and B. Hess, J. Phys. Chem., 1989, 93, 707 CrossRef CAS.
  24. Z. Nagy-Ungvarai, S. C. Muller, J. J. Tyson and B. Hess, J. Phys. Chem., 1989, 93, 2764 CrossRef CAS.
  25. A. M. Zhabotinsky, L. Gyorgyi, M. Dolnik and I. R. Epstein, J. Phys. Chem., 1994, 98, 7981 CrossRef.
  26. W. Jahnke, C. Henze and A. T. Winfree, Nature (London), 1988, 336, 662 CAS.
  27. W. Jahnke and A. T. Winfree, Int. J. Bifurc. Chaos, 1991, 1, 445 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.