Structural and spectroscopic characterization of ClC(O)SNSO. A theoretical and experimental study

(Note: The full text of this document is currently only available in the PDF Version )

R M. Romano, C O. Della Védova, R Boese and P Hildebrandt


Abstract

N-(Sulfinylimine)chlorocarbonylsulfane, ClC(O)SNSO, was prepared by the reaction of ClC(O)SCl with Hg(NSO)2. The crystal structure of ClC(O)SNSO was determined by X-ray diffraction analysis from crystals obtained at low temperature using a miniature zone melting procedure. The molecule exhibits only one form with Cs symmetry: the C[double bond, length as m-dash]O double bond syn with respect to the S–N single bond, the C–S single bond anti to the N[double bond, length as m-dash]S double bond and the S–N single bond syn with respect to the S[double bond, length as m-dash]O double bond. The following skeletal parameters were determined (distances in Å, angles in degrees, errors between parentheses expressed as sigma): Cl–C=1.771(2), C[double bond, length as m-dash]O=1.184(3), C–S=1.750(2), S–N=1.666(2), N[double bond, length as m-dash]S=1.534(2), S[double bond, length as m-dash]O=1.455(2), ClCO=122.9(2), ClCS=107.1(1), OCS=130.0(2), CSN=97.4(1), SNS=122.3(1). NSO=118.0(1), OCSN=-1.9, ClCSN=178.0, CSNS=-178.0, SNSO=-1.2. These experimental parameters compare satisfactorily with those obtained by abinitio and DFT calculations. The best agreement was found with the B3PW91/6–31+G* calculation. These quantum chemical methods were also employed to predict the vibrational spectra providing a good agreement with the experimental Raman spectra measured from the liquid sample. It is shown that the analysis of the vibrational spectra provides a sound basis for the determination of the conformation and configuration of R–N[double bond, length as m-dash]S[double bond, length as m-dash]O compounds. Raman excitation profiles were determined in the range from 514 to 413 nm. Most of the modes are predominantly enhanced via the π→π* transition at 296 nm but additional intensity is derived from low-electronic transitions at ca. 450 and 430 nm which are too weak to be detectable in the UV/VIS absorption spectra.


References

  1. M. Goehring and D. Schuster, Angew. Chem., 1952, 64, 617.
  2. T. Chivers, Sulfur Rep., 1986, 7, 89 Search PubMed.
  3. A. Brosius, Dissertation, Ruhr-Universität Bochum, 1993.
  4. H.-G. Mack, H. Oberhammer and C. O. Della Védova, J. Mol. Struct., 1992, 265, 347 CrossRef CAS.
  5. R. M. Romano, R. Boese and C. O. Della Védova, J. Mol. Struct., in press Search PubMed.
  6. N. Baumann, H. J. Fachmann, B. Heibel, R. Jotter and A. Kubny, Gmelin Handbook of Inorganic Chemistry, Springer, Berlin, 8th edn., 1990 Search PubMed.
  7. C. O. Della Védova, J. Mol. Struct., 1992, 274, 9 CrossRef.
  8. R. Schnepf, A. Sokolowski, J. Müller, V. Bachler, K. Wieghardt and P. Hildebrandt, J. Am. Chem. Soc., 1998, 120, 2352 CrossRef CAS.
  9. D. Brodalla, D. Mootz, R. Boese and W. Osswald, J. Appl. Crystallogr., 1985, 18, 316 CrossRef.
  10. SHELTX-Plus Version SGI IRIS Indigo, a Complete Software Package for Solving, Refining and Displaying Crystal Structures, Siemens, Germany, 1991 Search PubMed.
  11. M. Carlotti, G. Di Lonardo, G. Galloni and A. Trombetti, J. Mol. Spectrosc., 1980, 84, 155 CAS.
  12. H. Oberhammer, Z. Naturforsch., Teil A, 1970, 25, 1497 CAS.
  13. B. Beagley, S. J. Chantrell, R. G. Kirby and D. G. Schmidling, J. Mol. Struct., 1975, 25, 319 CrossRef CAS.
  14. S. Cradock, E. A. V. Ebsworth, G. D. Meikle and D. W. H. Rankin, J. Chem. Soc., Dalton Trans., 1975, 805 RSC.
  15. R. Steudel, J. Steidel and N. Rautenberg, Z. Naturforsch., Teil B, 1980, 35, 792 Search PubMed.
  16. M. Graw and A. Haas, personal communication.
  17. A. Haas, J. Kasprowski, K. Angermund, P. Betz, C. Krüger, Y.-H. Tsay and S. Werner, Chem. Ber., 1991, 124, 1895 CAS.
  18. A. Haas and R. Pohl, Chimia, 1989, 43, 261 CAS.
  19. R. M. Romano, C. O. Della Védova, H.-G. Mack and H. Oberhammer, J. Mol. Struct., 1998, 440, 43 CrossRef CAS.
  20. A. Brosius and A. Haas, Chem. Ber., 1985, 128, 651.
  21. K. I. Gobbato, C. O. Della Védova and H. Oberhammer, J. Mol. Struct., 1995, 350, 227 CrossRef CAS.
  22. C. O. Della Védova, H. Duddeck and H.-W. Praas, Magn. Reson. Chem., 1992, 30, 962.
  23. R. E. Kagarise, J. Am. Chem. Soc., 1955, 77, 1377 CrossRef CAS.
  24. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. González and J. A. Pople, Gaussian 94, Revision D.3, Gaussian, Pittsburgh, PA, 1995 Search PubMed.
  25. R. M. Romano, C. O. Della Védova, A. Pfeiffer, H.-G. Mack and H. Oberhammer, J. Mol. Struct., 1998, 446, 127 CrossRef CAS.
  26. I. Magdo, K. Nemeth, F. Mark, P. Hildebrandt, K. Schaffner, J. Phys. Chem., in press Search PubMed.
  27. Note that these scaling factors have been determined for the 6–31G* basis sets for the DFT (B3LYP) and the MP2 method (24).
Click here to see how this site uses Cookies. View our privacy policy here.