Transient colloidal gels by Brownian dynamics computer simulation

(Note: The full text of this document is currently only available in the PDF Version )

J F. M. Lodge and D M. Heyes


Abstract

Brownian dynamics, BD, simulation has been used to model the structural evolution, phase separation dynamics and rheology of transient particle colloidal gels during formation, by quenching model monodisperse attractive spherical colloidal particles from a supercritical state point into the vapour/liquid or vapour/solid parts of their phase diagrams. Calculations were performed with particles interacting via 12:6, 24:12 and 36:18 Lennard-Jones type interaction laws at sub-critical temperatures kBT/ε, where ε is the depth of the potential well, down to 0.01 and low volume fractions (φ⩽0.2). These systems developed a gel-like morphology during the simulations, with the aggregate morphology and rheology sensitive to the range of the attractive part of the potential and the position in the phase diagram of the quench. The long-range 12:6 potential induced compact structures with thick filaments, whereas the systems generated using the shorter-ranged 24:12 and 36:18 potentials persisted in a more diffuse network for the duration of the simulations and evolved more slowly with time. The rheology of these systems was characterized using the linear shear stress relaxation function, Cs(t), computed using the Green–Kubo fluctuation formula. The rheology of many of the systems displayed gel-like viscoelastic features, especially for the long-range attractive interaction potentials, which manifested a non-zero plateau in Cs(t), the so-called equilibrium modulus, Geq, a useful indicator of a gel, which suggests also the presence of an apparent yield stress. A formal statistical mechanical definition of Geq is presented. The infinite frequency shear rigidity modulus G is extremely sensitive to the form of the potential. Despite being the most short-lived, the 12:6 potential systems gave the most pronounced gel-like rheological features, which suggests that the traditional picture of a particle gel as being formed by thin filametary networks might require reconsideration.


References

  1. M. Whittle and E. Dickinson, J. Chem. Soc., Faraday Trans., 1998, 94, 2453 RSC.
  2. M. H. J. Hagen and D. Frenkel, J. Chem. Phys., 1994, 101, 4093 CrossRef CAS.
  3. P. Bolhuis and D. Frenkel, Phys. Rev. Lett., 1994, 72, 2211 CrossRef CAS.
  4. C. F. Tejero, A. Daanoun, H. N. W. Lekkerkerker and M. Baus, Phys. Rev. E: Stat. Phys. Plasmas, Fluids, Relat. Interdiscip. Top., 1995, 51, 558 Search PubMed.
  5. J. K. G. Dhont and I. Bodnar, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1998, 58, 4783 Search PubMed.
  6. M. D. Haw, W. C. K. Poon, P. N. Pusey, P. Hebraud and F. Lequeux, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1998, 58, 4673 Search PubMed.
  7. M. A. Faers and P. F. Luckham, Langmuir, 1997, 13, 2922 CrossRef CAS.
  8. H. Verduin and J. K. G. Dhont, J. Colloid Interface Sci., 1995, 172, 425 CrossRef CAS.
  9. J. W. Cahn and J. E. Hilliard, J. Chem. Phys., 1958, 28, 258 CrossRef CAS.
  10. J. W. Cahn and J. E. Hilliard, J. Chem. Phys., 1959, 31, 688 CrossRef CAS.
  11. W. C. K. Poon, A. D. Pirie and P. N. Pusey, Faraday Discuss., 1995, 101, 65 RSC.
  12. N. A. M. Verhaegh, D. Asnaghi, H. N. W. Lekkerkerker, M. Giglio and L. Cipelletti, Physica A (Amsterdam), 1997, 242, 104 Search PubMed.
  13. N. A. M. Verhaegh, J. S. van Duijneveldt, J. K. G. Dhont and H. N. W. Lekkerkerker, Physica A (Amsterdam), 1996, 230, 409 Search PubMed.
  14. J. F. M. Lodge and D. M. Heyes, J. Chem. Soc., Faraday Trans., 1997, 93, 437 RSC.
  15. J. F. M. Lodge and D. M. Heyes, Mol. Simul., 1996, 18, 155 Search PubMed.
  16. J. F. M. Lodge and D. M. Heyes, J. Chem. Phys, 1998, 109, 7567 CrossRef CAS.
  17. J. F. M. Lodge and D. M. Heyes, J. Rheol. (N.Y.), 1999, 43, 219 Search PubMed.
  18. T. Coussaert and M. Baus, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1996, 52, 862 Search PubMed.
  19. A. P. Gast, C. K. Hall and W. B. Russel, J. Colloid Interface Sci., 1983, 96, 251 CrossRef CAS.
  20. A. Cheng, M. L. Klein and C. Caccamo, Phys. Rev. Lett., 1993, 71, 1200 CrossRef CAS.
  21. M. Hasegawa, J. Chem. Phys., 1998, 108, 208 CrossRef CAS.
  22. M. Hasegawa and K. Ohno, J. Phys.: Condens. Matter, 1997, 9, 3361 CrossRef CAS.
  23. D. A. Kofke, J. Chem. Phys., 1993, 98, 4149 CrossRef CAS.
  24. R. Agrawal and D. A. Kofke, Mol. Phys., 1995, 85, 43 CAS.
  25. D. M. Heyes, The Liquid State: Applications of Molecular Simulations, J. Wiley and Sons, Chichester, 1997 Search PubMed.
  26. D. L. Ermak, J. Chem. Phys., 1975, 62, 4189 CrossRef CAS.
  27. G. Marrucci, J. Phys.: Condens. Matter, 1994, 6, A305 CrossRef CAS.
  28. W. Liang, T. F. Tadros and P. F. Luckham, J. Colloid Interface Sci., 1993, 158, 152 CrossRef CAS.
  29. W. Shih, W. Y. Shih, S. Kim, J. Liu and I. A. Aksay, Phys. Rev. A, 1990, 42, 4772 CrossRef CAS.
  30. R. de Rooij, D. van den Ende, M. H. G. Duits and J. Mellema, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1994, 49, 3038 Search PubMed.
  31. D. F. Hodgson and E. J. Amis, Phys. Rev. A, 1990, 41, 1182 CrossRef CAS.
  32. D. M. Heyes and A. C. Branka, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1994, 50, 2377 Search PubMed.
  33. G. Cuvelier and B. Launay, Makromol. Chem., Macromol. Symp., 1990, 40, 23 Search PubMed.
  34. M. Takahashi, K. Yokoyama, T. Masuda and T. Takigawa, J. Chem. Phys., 1994, 101, 798 CrossRef CAS.
  35. C. Michon, G. Cuvelier and B. Launay, Rheol. Acta, 1993, 32, 94 CAS.
  36. R. Zwanzig and R. D. Mountain, J. Chem. Phys., 1965, 43, 4464 CAS.
  37. D. Bacon and W. F. Anderson, J. Mol. Graphics, 1988, 6, 219 CrossRef.
  38. G. A. Merritt and M. E. P. Murphy, Acta Crystallogr., Sect. D: Biol. Crystallogr., 1994, D50, 869 CrossRef.
  39. J. D. Gunton, M. San Miguel and P. S. Sahni, in Phase Transitions and Critical Phenomena', ed. C. Domb and J. L. Lebowitz, Academic Press, London, 1983, vol. 8, ch. 3 Search PubMed.
  40. M. D. Haw, M. Sievwright, W. C. K. Poon and P. N. Pusey, Physica A, 1995, 217, 231 CrossRef.
  41. B. D. Butler, H. J. M. Hanley, D. Hansen and D. J. Evans, Phys. Rev. Lett., 1995, 74, 4468 CrossRef CAS.
  42. H. Furukawa, Adv. Phys., 1985, 34, 703 CAS.
  43. T. Terao and T. Nakayama, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1998, 58, 3490 Search PubMed.
  44. R. I. Tanner, Engineering Rheology, Oxford University Press, Oxford, 1992 Search PubMed.
  45. D. M. Heyes and J. G. Powles, Mol. Phys., 1998, 95, 259 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.