Helicity decoupled quantum dynamics and capture model cross sections and rate constants for O(1D)+H2→OH+H

(Note: The full text of this document is currently only available in the PDF Version )

Stephen K. Gray, Evelyn M. Goldfield, George C. Schatz and Gabriel G. Balint-Kurti


Abstract

We study, within a helicity decoupled quantum approximation, the total angular momentum J dependence of reaction probabilities for the reaction O(1D)+H2→OH+H. A recently developed real wave packet approach is employed for the quantum calculations. The abinitio based, ground electronic ([X with combining tilde]1A′) potential energy surface of Ho etal. (T-S. Ho, T. Hollebeeck, H. Rabitz, L. B. Harding and G. C. Schatz, J. Chem. Phys., 1996, 105, 10472) is assumed for most of our calculations, although some calculations are also performed with a recent surface due to Dobbyn and Knowles. We find that the low J reaction probabilities tend to be, on average, slightly lower than the high J probabilities. This effect is also found to be reproduced in classical trajectory calculations. A new capture model is proposed that incorporates the available quantum data within an orbital angular momentum or l-shifting approximation to predict total cross sections and rate constants. The results agree well with classical trajectory results and the experimental rate constant at room temperature. However, electronically non-adiabatic effects may become important at higher temperature.


References

  1. Y.-T. Hsu, J.-H. Wang and K. Liu, J. Chem. Phys., 1997, 107, 2351 CrossRef CAS.
  2. Y.-T. Hsu and K. Liu, J. Chem. Phys., 1996, 107, 2351 CrossRef.
  3. A. J. Alexander, D. A. Blunt, M. Brouard, J. P. Simons, F. J. Aoiz, L. Banares, Y. Fujimura and M. Tsubouchi, Faraday Discuss., 1997, 108, 375 RSC.
  4. M. A. Alagia, N. Balucani, L. Cartechini, P. Casavecchia, E. H. van Kleef, G. G. Volpi, P. J. Kuntz and J. J. Sloan, J. Chem. Phys., 1998, 108, 6698 CrossRef CAS.
  5. T.-S. Ho, T. Hollebeek, H. Rabitz, L. B. Harding and G. C. Schatz, J. Chem. Phys., 1996, 105, 10472 CrossRef CAS.
  6. G. C. Schatz, A. Papaioannou, L. A. Pederson, L. B. Harding, T. Hollebeek, T.-S. Ho and H. Rabitz, J. Chem. Phys., 1997, 107, 2340 CrossRef CAS.
  7. A. J. C. Varandas, A. I. Voronin, A. Riganelli and P. J. S. B. Caridade, Chem. Phys. Lett., 1997, 278, 325 CrossRef CAS.
  8. G. C. Schatz, L. A. Pederson and P. J. Kuntz, Faraday Discuss., 1997, 108, 357 RSC.
  9. T. Peng, D.-H. Zhang, J. Z. H. Zhang and R. Schinke, Chem. Phys. Lett., 1996, 248, 37 CrossRef CAS.
  10. J. Dai, J. Chem. Phys., 1997, 107, 4934 CrossRef CAS.
  11. G. G. Balint-Kurti, A. I. Gonzales, S. K. Gray and E. M. Goldfield, Faraday Discuss., 1998, 110, 169 RSC.
  12. F. J. Aoiz, Faraday Discuss., 1998, 110, 245 Search PubMed.
  13. F. J. Aoiz, L. Banares and V. J. Herrero, J. Chem. Soc., Faraday Trans., 1998, 94, 2483 RSC.
  14. A. J. Dobbyn and P. J. Knowles, Faraday Discuss., 1998, 110, 247 Search PubMed.
  15. J. M. Bowman, J. Phys. Chem., 1991, 95, 4960 CrossRef CAS.
  16. Q. Sun, J. M. Bowman, G. C. Schatz, J. R. Sharpe and J. N. L. Connor, J. Chem. Phys., 1990, 92, 1677 CrossRef CAS.
  17. D. Wang and J. M. Bowman, J. Chem. Phys., 1993, 98, 6235 CrossRef CAS.
  18. A. J. H. M. Meijer and E. M. Goldfield, J. Chem. Phys., 1998, 108, 5404 CrossRef CAS.
  19. A. J. H. M. Meijer and E. M. Goldfield, J. Chem. Phys., 1999, 110, 870 CrossRef CAS.
  20. S. L. Mielke, G. C. Lynch, D. G. Truhlar and D. W. Schwenke, Chem. Phys. Lett., 1993, 216, 441 CrossRef CAS.
  21. S. L. Mielke, G. C. Lynch, D. G. Truhlar and D. W. Schwenke, J. Phys. Chem., 1994, 98, 8000 CrossRef CAS.
  22. M. S. Fitzcharles and G. C. Schatz, J. Phys. Chem., 1986, 90, 3634 CrossRef CAS.
  23. D. C. Clary, Mol. Phys., 1984, 53, 3 CAS.
  24. R. Schinke and W. A. Lester, Jr., J. Chem. Phys., 1980, 72, 3754 CrossRef CAS.
  25. R. Schinke, J. Chem. Phys., 1984, 80, 5510 CrossRef CAS.
  26. S. K. Gray and G. G. Balint-Kurti, J. Chem. Phys., 1998, 108, 950 CrossRef CAS.
  27. R. T. Pack, J. Chem. Phys., 1974, 60, 633 CrossRef CAS.
  28. P. McGuire and D. J. Kouri, J. Chem. Phys., 1974, 60, 2488 CrossRef CAS.
  29. C. Leforestier, J. Chem. Phys., 1991, 94, 6388 CrossRef CAS.
  30. Y. Huang, D. J. Kouri and D. K. Hoffman, J. Chem. Phys., 1994, 101, 10493 CrossRef CAS.
  31. Y. Huang, S. S. Iyengar, D. J. Kouri and D. K. Hoffman, J. Chem. Phys., 1996, 105, 927 CrossRef CAS.
  32. V. A. Mandelshtam and H. S. Taylor, J. Chem. Phys., 1995, 102, 7390 CrossRef CAS.
  33. V. A. Mandelshtam and H. S. Taylor, J. Chem. Phys., 1995, 103, 2903 CrossRef CAS.
  34. G.-J. Kroes and D. Neuhauser, J. Chem. Phys., 1996, 105, 8690 CrossRef CAS.
  35. R. Chen and H. Guo, J. Chem. Phys., 1996, 105, 3569 CrossRef CAS.
  36. R. Chen and H. Guo, Chem. Phys. Lett., 1996, 261, 605 CrossRef CAS.
  37. A. J. H. M. Meijer, E. M. Goldfield, S. K. Gray and G. G. Balint-Kurti, Chem. Phys. Lett., 1998, 293, 270 CrossRef.
  38. R. Guadagnini and G. C. Schatz, J. Phys. Chem., 1996, 100, 18944 CrossRef CAS.
  39. For example, eqn. (2.50) of W. H. Miller, J. Chem. Phys., 1975, 62, 1899 Search PubMed.
  40. R. K. Talukdar and A. R. Ravishankara, Chem. Phys. Lett., 1996, 253, 177 CrossRef CAS.
  41. J. A. Davidson, C. M. Sadowski, H. I. Schiff, C. E. Streit, C. J. Howard, D. A. Jennings and A. L. Schmeltekopf, J. Chem. Phys., 1976, 64, 57 CrossRef CAS.
  42. S. Koppe, T. Laurent, P. D. Naik, H.-R. Volpp, J. Wolfrum, T. Arusi-Parpar, I. Bar and S. Rosenwaks, Chem. Phys. Lett., 1993, 214, 546 CrossRef CAS.
  43. F. J. Aoiz, L. Banares, B. Martinez-Haya, J. F. Castillo, D. E. Manolopoulos, K. Stark and H.-J. Werner, J. Phys. Chem. A, 1997, 101, 6403 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.