EPR and ENDOR studies of NOx and Cu2+ in zeolites: bonding and diffusion

(Note: The full text of this document is currently only available in the PDF Version )

Daniele Biglino, Haitao Li, Roland Erickson, Anders Lund, Hidenori Yahiro and Masaru Shiotani


Abstract

The diffusion and bonding of NOx (x=1, 2) and Cu2+ species in zeolites are reviewed, based mainly on our own research. The molecular motion of adsorbed NO2 has been examined with EPR in several zeolite samples and analyzed using the slow-motional EPR theory. In X- and Y-type zeolites the broadening of the spectra with temperature could be analyzed by simulations using a rotational diffusion model in agreement with earlier results in Vycor glass and Cu-metal. For the diffusion of NO2 in Na-mordenite and Na-ZSM-5 the broadening of the spectra with increased temperature could be better simulated with the Heisenberg type of spin exchange model. The exchange was attributed to the interaction between NO2 molecules diffusing along the zeolite channels. In Na-ZSM-5 the spin exchange rate increased rapidly with an increasing Si/Al ratio of the zeolite. The effect was attributed to the hindrance against diffusion by Na+, the amount of which increases with a decreased Si/Al ratio. The rates increased with increasing number of H2O molecules adsorbed on the zeolite because of weaker interaction between NO2 and the surface. A more detailed slow-motional analysis indicated that at each temperature a distribution of diffusion rates occurs. NO adsorbed on Na-A zeolite was found to be present as monomer at low pressure (<1 mbar) while a dimer characterised by a triplet state ESR spectrum involving ΔMs=1 and ΔMs=2 features became dominant at higher NO pressure (>100 mbar). The triplet was absent in calcium ion-exchanged A-type zeolite indicating that the NO–NO species depends on Na+ for its stability. The detailed structure of a Cu2+ complex with water molecules in Cu-ZSM-5 zeolite was characterised with ENDOR at 4 K. The complex has an axial distorted octahedral structure with two water molecules at a longer distance in axial position and four molecules in the equatorial positions. The Cu2+ complexes with ammonia and deuterated ammonia have been investigated with electron nuclear double resonance (ENDOR). Simulations of the ENDOR spectra with 1H, 2H and 14N hyperfine interactions have been undertaken. The analysis indicates that the complex has a square planar structure with four ammonia ligands.


References

  1. J. W. Hightower and D. A. van Leirsberg, in The Catalytic Chemistry of Nitrogen Oxides, ed. R. L. Klimish and J. G. Larson, Plenum Press, New York, 1975, p. 63 Search PubMed.
  2. H. Bosch and F. J. J. G. Janssen, Catal. Today, 1988, 4, 1 CrossRef.
  3. A. Crucq and A. Ferennet, in Catalysis and Automotive Pollution Control, Elsevier, Amsterdam, 1987, p. 1 Search PubMed.
  4. K. C. Taylor, in Catalysis, ed. J. R. Anderson and M. Boudart, Springer-Verlag, Berlin, 1984, p. 119 Search PubMed.
  5. M. Iwamoto and H. Hamada, Catal. Today, 1991, 10, 57 CrossRef CAS.
  6. M. Iwamoto, S. Yokoo, K. Sasaki and S. Kagawa, J. Chem. Soc., Faraday Trans. 1, 1981, 77, 1629 RSC.
  7. W. X. Zhang, H. Yahiro, N. Mizuno, J. Izumi and M. Iwamoto, Langmuir, 1993, 9, 2337 CrossRef CAS.
  8. M. Iwamoto and H. Yahiro, Catal. Today, 1994, 22, 5 CrossRef CAS.
  9. M. Shelef, Chem. Rev., 1995, 95, 209 CrossRef CAS.
  10. M. Iwamoto, H. Yahiro, K. Tanda, N. Mizuno, Y. Mine and S. Kagawa, J. Phys. Chem., 1991, 95, 3727 CrossRef CAS.
  11. T. Komatsu, M. Nunokawa, I. S. Moon, T. Takahara, S. Namba and T. Yashima, J. Catal., 1994, 148, 427 CrossRef CAS.
  12. G. I. Panov, V. I. Sobolev and A. S. Kharitonov, J. Mol. Catal., 1990, 61, 85 CrossRef CAS.
  13. Y. Li and W. K. Hall, J. Phys. Chem., 1990, 94, 6145 CrossRef CAS.
  14. A. Fritz and V. Pitchon, Appl. Catal. B, 1998, 13, 1 CrossRef CAS.
  15. M. Anpo, M. Matsuoka, Y. Shioya, H. Yamashita, E. Giamello, C. Morterra, M. Che, H. H. Patterson, S. Webber, S. Ouellette and M. A. Fox, J. Phys. Chem., 1994, 98, 5744 CrossRef CAS.
  16. D. J. Parrillo, D. Dolenec, R. J. Gorte and R. W. McCabe, J. Catal., 1993, 142, 708 CrossRef CAS.
  17. Z. Chajar, M. Primet, H. Praliaud, M. Chevrier, C. Gauthier and F. Mathis, Appl. Catal., B, 1994, 4, 199 CrossRef CAS.
  18. M. Iwamoto, H. Yahiro, Y. Torikai, T. Yoshioka and N. Mizuno, Chem. Lett., 1990, 1967 CAS.
  19. Y. Zhang, K. M. Leo, A. F. Sarofim, Z. Hu and M. F-Stephanopoulos, Catal. Lett., 1995, 31, 75 CAS.
  20. Y. Li and W. K. Hall, J. Catal., 1991, 129, 202 CrossRef CAS.
  21. M. Iwamoto, H. Yahiro, N. Mizuno, W. X. Zhang, Y. Mine, H. Furukawa and S. Kagawa, J. Phys. Chem., 1992, 96, 9360 CrossRef CAS.
  22. E. Giamello, D. Murphy, G. Magnacca, C. Morterra, Y. Shioya, T. Nomura and M. Anpo, J. Catal., 1992, 136, 510 CrossRef CAS.
  23. J. Valyon and W. K. Hall, J. Phys. Chem., 1993, 97, 1204 CrossRef CAS.
  24. A. P. Walker, Catal. Today, 1995, 26, 107 CrossRef CAS.
  25. J. Fraissard and T. Ito, Zeolites, 1988, 8, 350 CAS.
  26. T. T. P. Cheung, C. M. Fu and S. Wharry, J. Phys. Chem., 1988, 92, 5170 CrossRef CAS.
  27. J. A. Ripmeester and C. I. Ratcliffe, J. Phys. Chem., 1990, 94, 7672.
  28. K. Dyrek and M. Che, Chem. Rev., 1997, 97, 305 CrossRef CAS.
  29. For example, see H. Zeldes and R. Livingston, J. Chem. Phys., 1961, 35, 563 Search PubMed.
  30. M. Shiotani and J. H. Freed, J. Phys. Chem., 1981, 85, 3873 CrossRef CAS.
  31. J. H. Freed, in Spin Labeling: Theory and Application, ed. L. Berliner, Academic Press, New York, 1976, vol. 1, ch. 3 Search PubMed.
  32. D. J. Schneider and J. H. Freed, in Biological Magnetic Resonance, Vol. 8. Spin Labeling Theory and Application, ed. L. Berliner and J. Reuben, Plenum Press, New York, 1989 Search PubMed.
  33. H. Yahiro, M. Shiotani, J. H. Freed, M. Lindgren and A. Lund, Stud. Surf. Sci. Catal., 1995, 94, 673 CAS.
  34. S. A. Goldman, G. V. Bruno, C. F. Polnaszek and J. H. Freed, J. Chem. Phys., 1972, 56, 716 CAS.
  35. τR is defined as τR=(τRτR)1/2=[6(RR)1/2]–1 for simple Brownian diffusion, where R and R are the principal values of axial and perpendicular rotational diffusion tensor and τR and τR are the corresponding rotational correlation times. See ref. 31.
  36. M. Nagata, H. Yahiro, M. Shiotani, M. Lindgren and A. Lund, Chem. Phys. Lett., 1996, 256, 27 CrossRef CAS.
  37. H. Li, H. Yahiro, M. Shiotani and A. Lund, J. Phys. Chem. B, 1998, 102, 5641 CrossRef CAS.
  38. H. Li, H. Yahiro, K. Komaguchi, M. Shiotani, E. Sagstuen and A. Lund, Microporous Mesoporous Mater., in the press Search PubMed.
  39. T. Tabata, M. Torikai, H. Ohtsuka, O. Okada, L. Sabatino and G. Bellussi, Catal. Today, 1996, 27, 91 CrossRef CAS.
  40. H. Li, A. Lund, M. Lindgren, E. Sagstuen and H. Yahiro, Chem. Phys. Lett., 1997, 271, 84 CrossRef CAS.
  41. H. Yahiro, M. Nagata, M. Shiotani, M. Lindgren, H. Li and A. Lund, Nukleonika, 1997, 42, 557 Search PubMed.
  42. P. H. Kasai and R. J. Bishop, Jr., in Zeolite Chemistry and Catalysis, ed. J. A. Rabo, ACS Monograph 171, American Chemical Society, Washington DC, 1976, p. 350 Search PubMed.
  43. J. H. Lunsford, J. Phys. Chem., 1968, 72, 4163 CrossRef CAS.
  44. C. L. Gardner and M. A. Weinberger, Can. J. Chem., 1970, 48, 1317 CAS.
  45. P. H. Kasai and R. J. Bishop, Jr., J. Am. Chem. Soc., 1972, 94, 5560 CrossRef CAS.
  46. M. Engström, H. Yahiro, N. P. Benetis, M. Shiotani and A. Lund, J. Phys. Chem., submitted Search PubMed.
  47. P. H. Kasai and R. M. Gaura, J. Phys. Chem., 1982, 86, 4257 CrossRef CAS.
  48. A. Gutsze, M. Plato, H. Karge and F. Witzel, J. Chem. Soc., Faraday Trans., 1996, 92, 2495 RSC.
  49. R. M. Barrer, J. Colloid Interface Sci., 1966, 21, 415 CAS.
  50. M. Katoh, T. Yamazaki, H. Kamijo and S. Ozawa, Zeolites, 1995, 15, 591 CrossRef CAS.
  51. Z. Sojka, M. Che and E. Giamello, J. Phys. Chem. B, 1997, 101, 4831 CrossRef CAS.
  52. B. L. Trout, A. K. Chakraborty and A. T. Bell, J. Phys. Chem., 1996, 100, 17582 CrossRef CAS.
  53. Y. Yokomichi, T. Yamabe, H. Ohtsuka and T. Kakumoto, J. Phys. Chem., 1996, 100, 14424 CrossRef CAS.
  54. R. Y. Yanagida, A. A. Amaro and K. Seff, J. Phys. Chem., 1973, 77, 805 CrossRef CAS.
  55. K. Seff and D. P. Shoemaker, Acta Crystallogr., 1967, 22, 162 CrossRef.
  56. M. Iwamoto, H. Yahiro, K. Tanda, N. Mizuno, Y. Mine and S. Kagawa, J. Phys. Chem., 1991, 95, 3727 CrossRef CAS.
  57. Y. Li, P. J. Battavio and J. N. Armor, J. Catal., 1993, 142, 561 CrossRef CAS.
  58. M. Anderson and L. Kevan, J. Phys. Chem., 1987, 91, 4174 CrossRef CAS.
  59. H. Li, D. Biglino, R. Erickson and A. Lund, Chem. Phys. Lett., 1997, 266, 417 CrossRef CAS.
  60. D. Biglino, V. Kugler, P.-O. Käll and A. Lund, manuscript in preparation.
  61. R. Erickson, Chem. Phys., 1996, 202, 263 CrossRef CAS.
  62. A. Lund and R. Erickson, Acta Chem. Scand., 1998, 52, 261 CAS.
  63. G. Bird, J. Baird, A. Jarle, J. Hodgson, R. Curl, A. Kunkle, J. Brandsford, J. Rastrup-Anderson and J. Rosenthal, J. Chem. Phys., 1964, 40, 3378 CAS.
  64. P. H. Kasai, W. Weltner, Jr. and E. B. Whipple, J. Chem. Phys., 1965, 42, 1120 CAS.
  65. R. Iyenger and V. Subba Rao, J. Am. Chem. Soc., 1968, 90, 3267 CrossRef.
  66. M. Nagata, H. Yahiro and M. Shiotani, unpublished data.
  67. J. R. Brailsford and J. R. Morton, J. Magn. Reson., 1969, 1, 575 CAS.
  68. I. Bojko and R. H. Silesen, J. Magn. Reson., 1971, 5, 339 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.