Efficient screening of electron transport material in multi-layer organic light emitting diodes by combinatorial methods

(Note: The full text of this document is currently only available in the PDF Version )

Christoph Schmitz, Peter Pösch, Mukundan Thelakkat and Hans-Werner Schmidt


Abstract

A combinatorial approach combining vapor deposition of organic molecules and a mask technique was used to prepare on one substrate a matrix of 49 organic light emitting diodes (OLEDs) with different configurations and layer thicknesses. A landscape library with two orthogonal, linear gradients of an emitter and a hole blocking electron transport material on top of a hole transport layer of constant thickness was prepared. The aim of this experiment was to investigate the influence of an additional electron transport material on the efficiency. Using a semi-automated measurement set-up, the device parameters for each of the 49 OLEDs were evaluated. The existence of an optimum Alq3 layer thickness for ITO/TPD/Alq3/Al two-layer devices was confirmed and such an optimized two-layer structure could not be improved by adding an additional hole blocking layer to the optimum Alq3 layer. However, an improvement in photometric efficiency can be achieved by replacing the optimum Alq3 layer thickness by certain combinations of Alq3/spiro-quinoxaline layers.


References

  1. R. F. Service, Science, 1996, 273, 878 CrossRef CAS.
  2. J. Shi and C. W. Tang, Appl. Phys. Lett., 1997, 70, 1665 CrossRef CAS.
  3. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913 CrossRef CAS.
  4. R. F. Service, Science, 1996, 273, 878 CrossRef CAS.
  5. Pioneer Electronic Corporation press release, September 28, 1998(www.pioneer.co.jp/press/index-e.html).
  6. H. Sirringhaus, N. Tessler and R. H. Friend, Science, 1998, 280, 1741 CrossRef CAS.
  7. C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters and D. M. de Leeuw, Appl. Phys. Lett., 1998, 73, 108 CrossRef CAS.
  8. X.-D. Xiang, X. Sun, G. Briceno, Y. Lou, K. A. Wang, H. Chang, W. G. Wallace-Freedman, S.-W. Chen and P. G. Schultz, Science, 1995, 268, 1738 CrossRef CAS.
  9. G. Briceno, H. Chang, X. Sun, P. G. Schultz and X.-D. Xiang, Science, 1995, 270, 273 CrossRef CAS.
  10. E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E. S. Smotkin and T. E. Mallouk, Science, 1998, 280, 1735 CrossRef CAS.
  11. E. Danielson, M. Devenney, D. M. Giaquinta, J. H. Golden, R. C. Haushalter, E. W. McFarland, D. M. Poojary, C. M. Reaves and W. H. Weinberg, Science, 1998, 279, 837 CrossRef CAS.
  12. R. Schlögl, Angew. Chem., Int. Ed. Engl., 1998, 37(17), 2333 CrossRef CAS.
  13. A. Holzwarth, H.-W. Schmidt and W. F. Maier, Angew. Chem., Int. Ed. Engl., 1998, 37(19), 2644 CrossRef.
  14. M. T. Reetz, M. H. Becker, K. M. Kühling and A. Holzwarth, Angew. Chem., Int. Ed. Engl., 1998, 37(19), 2647 CrossRef CAS.
  15. J. J. Hanak, J. Mater. Sci., 1970, 5, 964 CrossRef CAS.
  16. J. J. Hanak and V. Korsun, in Proceedings of the Fifteenth IEEE Photovoltaic Specialists Conference, 1978, p. 780 Search PubMed.
  17. J. Hanak, Jpn. J. Appl. Phys., 1974, Suppl. 2, Part 1, 809 Search PubMed.
  18. M. Thelakkat and H.-W. Schmidt, Polym. Adv. Technol., 1998, 9(7), 429 CrossRef CAS.
  19. M. Strukelj, J. Hamier, E. Elce and A. S. Hay, J. Polym. Sci. Part A: Polym. Chem., 1994, 32, 193 CAS.
  20. T. Yamamoto, Prog. Polym. Sci., 1992, 17, 1153 CrossRef CAS.
  21. M. Thelakkat, R. Fink, F. Haubner and H.-W. Schmidt, Macromol. Symp., 1997, 125, 157.
  22. J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H. Bässler, M. Porsch and J. Daub, Adv. Mater., 1995, 7, 551 CrossRef CAS.
  23. C. Adachi, K. Nagai and N. Tamoto, Appl. Phys. Lett., 1995, 66(20), 2679 CrossRef CAS.
  24. P. E. Burrows and S. R. Forrest, Appl. Phys. Lett., 1994, 64(17), 2285 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.