Monte Carlo simulation of the influence of urea on the self-association of propan-1-ol in water

(Note: The full text of this document is currently only available in the PDF Version )

Mohsen Tafazzoli, Mehdi Jalali-Heravi and Ali Khanlarkhani


Abstract

The driving forces involved in self-association of propan-1-ol in binary and ternary water–propanol–urea systems were investigated quantitatively by using Monte Carlo (MC) simulations. By choosing propanol as a model the roles of both hydrophobic and hydrophilic interactions were studied through the calculation of the potential of mean force (PMF). All the MC simulations were performed at 25°C and 1 atm, representing the solutes and urea via optimised potential for liquid simulation (OPLS) potential functions and the TIP4P water model. The reaction coordinate, rc, was defined as the distance between the centres of the central sites (C1 atom of propanol) of two propan-1-ol molecules. Inspection of spatial views of different configurations of the association phenomenon and the shape of the PMF indicate that association in the binary system is essentially hydrophobic. In contrast to the binary system the alkyl groups are far apart from each other in the ternary system. The presence of urea in the vicinity of each alkyl group causes a greater structural adaptability and therefore more complete solvation. For the ternary system at a suitable geometry (in this case at rc=5.2 Å) a bridge is formed by a water molecule. This supports the idea that the formation of a bridge by a water molecule could be an effective driving force for the association of hydrophilic groups.


References

  1. S. T. Durell, B. R. Brooks and A. Ben-Naim, J. Phys. Chem., 1994, 98, 2198 CrossRef CAS.
  2. M. Mezei and A. Ben-Naim, J. Chem. Phys., 1990, 92, 1359 CrossRef CAS.
  3. A. Ben-Naim, Biopolymers, 1990, 29, 567 CrossRef CAS.
  4. A. Ben-Naim, J. Chem. Phys., 1990, 93, 8196 CrossRef.
  5. K. A. Dill, Biochemistry, 1990, 29, 7133 CrossRef CAS.
  6. A. S. Yang, K. A. Sharp and B. J. Honig, J. Mol. Biol., 1992, 227, 889 CAS.
  7. G. Ravishanker and D. L. Beveridge, in Theoretical Chemistry of Biological Systems, ed. G. Naray-Szabo, Elsevier, New York, 1986 Search PubMed.
  8. A. Ben-Naim, J. Chem. Phys., 1989, 90, 7412 CrossRef CAS.
  9. A. Ben-Naim, J. Phys. Chem., 1990, 94, 6893 CrossRef CAS.
  10. J. F. Brandts and L. Hunt, J. Am. Chem. Soc., 1967, 89, 4826 CrossRef CAS.
  11. D. B. Wetlaufer, S. K. Malik, L. Stoller and R. I. Coffin, J. Am. Chem. Soc., 1964, 86, 508 CrossRef CAS.
  12. M. Shick, J. Phys. Chem., 1964, 68, 3585 CrossRef.
  13. W. Brunning and A. Holtzer, J. Am. Chem. Soc., 1961, 83, 4865 CrossRef.
  14. P. Mukerjee and A. Ray, J. Phys. Chem., 1963, 67, 190 CAS.
  15. P. Mukerjee and A. K. Ghosh, J. Phys. Chem., 1963, 67, 193 CAS.
  16. D. B. Wetlaufer, S. K. Malik, L. Stoller and R. L. Coffin, J. Am. Chem. Soc., 1964, 86, 508 CrossRef CAS.
  17. Y. Nozaki and C. Tanford, J. Biol. Chem., 1963, 238, 4074 CAS.
  18. G. C. Kresheck and L. Benjamin, J. Phys. Chem., 1964, 68, 2476 CAS.
  19. M. J. Schick, J. Phys. Chem., 1964, 68, 3585 CrossRef.
  20. P. L. Whitney and C. Tanford, J. Biol. Chem., 1962, 237, PC7135.
  21. L. Levine, J. A. Gordon and W. B. Jencks, Biochemistry, 1963, 2, 168 CrossRef CAS.
  22. M. Roseman and W. P. Jencks, J. Am. Chem. Soc., 1975, 97, 631 CrossRef CAS.
  23. D. Robinson and W. P. Jencks, J. Am. Chem. Soc., 1965, 87, 2462 CrossRef CAS.
  24. E. G. Finer, F. Franks and M. J. Tait, J. Am. Chem. Soc., 1972, 94, 4424 CrossRef CAS.
  25. P. Picker, P. A. Ledue, P. R. Philip and J. E. Desnoyers, J. Chem. Thermodyn., 1971, 3, 631 CAS.
  26. R. Breslow and T. Guo, Proc. Natl. Acad. Sci., 1990, 87, 167 CAS.
  27. A. R. Leach, Molecular Modelling, Addison Wesley Longman, Harlow, 1996 Search PubMed.
  28. E. M. Duffy, P. J. Kowalczyk and W. L. Jorgensen, J. Am. Chem. Soc., 1993, 115, 9271 CrossRef CAS.
  29. R. A. Kuharski and P. J. Rossky, J. Am. Chem. Soc., 1984, 106, 5786 CrossRef.
  30. R. A. Kuharski and P. J. Rossky, J. Am. Chem. Soc., 1984, 106, 5794 CrossRef.
  31. J. Tirado-Rives, M. Orozco and W. L. Jorgensen, Biochemistry, 1997, 36, 7313 CrossRef CAS.
  32. A. Sacco, A. Asciolla, E. Matteoli and M. Holz, J. Chem. Soc., Faraday Trans., 1996, 92, 35 RSC.
  33. R. W. Zwanzig, J. Chem. Phys., 1954, 22, 1420 CAS; W. L. Jorgensen and J. K. Buckner, J. Phys. Chem., 1986, 90, 4651 CrossRef CAS; W. L. Jorgensen, J. K. Buckner, S. E. Huston and P. J. Rossky, J. Am. Chem. Soc., 1987, 109, 1891 CrossRef CAS.
  34. W. L. Jorgensen, J. Phys. Chem., 1986, 90, 1276 CrossRef CAS.
  35. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, J. Chem. Phys., 1983, 79, 926 CrossRef CAS.
  36. W. L. Jorgensen and C. J. Ravimohan, J. Chem. Phys., 1985, 83, 3050 CrossRef CAS.
  37. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987 Search PubMed.
  38. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, J. Chem. Phys., 1953, 21, 1087 CrossRef CAS.
  39. J. C. Owicki, ACS Symp. Ser., 1978, 86, 159 CAS.
  40. T. A. Andrea, W. C. Swope and H. C. Andersen, J. Chem. Phys., 1983, 79, 4576 CrossRef CAS.
  41. W. L. Jorgensen, J. K. Buckner, S. Boudon and J. Tirado-Rives, J. Chem. Phys., 1988, 89, 3742 CrossRef CAS.
  42. R. A. Friedman and B. Honig, Biophys. J., 1996, 71, 3525 CAS.
  43. G. Casronuovo, V. Elia and F. Veleca, J. Chem. Soc., Faraday Trans., 1996, 92, 4215 RSC.
  44. J. T. Edsall and H. A. McKenzie, Adv. Biophys., 1983, 16, 53 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.