Local propagating Gaussians: flexible vs. frozen widths

(Note: The full text of this document is currently only available in the PDF Version )

Sybil M. Anderson, Tae Jun Park and Daniel Neuhauser


Abstract

Recently we presented a method for modeling a quantum system to a bath that explicitly correlates the system with the individual bath modes. We do this through representation of the bath by locally propagating Gaussians (LPG), which change in position and momentum but remain Gaussian in form. The explicit correlation of the system to the bath modes enters through the simultaneous use of a different Gaussian for each state (or grid point) of the system. In this work, we look at two possibilities for the LPG method. In the frozen LPG, the width of the Gaussians is kept constant. In the flexible LPG, we relax this condition and allow for the width to be both time dependent and complex. We present a comparative study of these two methods and compare them with both time-dependent self-consistent field calculations (TDSCF) and an exact quantum calculation. The two LPG methods, in comparison with TDSCF, more accurately describe the exact dynamics. The difference is especially noticeable in the case of weak coupling, where the averaging done in TDSCF is an oversimplification of the system.


References

  1. D. Neuhauser, J. Chem. Phys., 1994, 100, 9272 CrossRef CAS.
  2. D. C. Clary, J. Phys. Chem., 1994, 98, 10678 CrossRef CAS.
  3. W. Zhu, J. Z. H. Zhang and D. H. Zhang, Chem. Phys. Lett., 1998, 292, 46 CrossRef CAS.
  4. M. F. Herman and E. Kluk, Chem. Phys., 1984, 91, 27 CrossRef CAS.
  5. K. G. Kay, J. Chem. Phys., 1994, 101, 2250 CrossRef.
  6. S. Garashchuk, F. Grossman and D. Tannor, J. Chem. Soc., Faraday Trans., 1997, 93, 781 RSC.
  7. A. E. Cardenas and R. D. Coalson, Chem. Phys. Lett., 1997, 265, 71 CrossRef CAS.
  8. M. L. Brewer, J. S. Hulme and D. E. Manolopoulus, J. Chem. Phys., 1997, 106, 4832 CrossRef CAS.
  9. E. R. Bittner, B. J. Schwartz and P. J. Rossky, J. Mol. Struct., 1997, 389, 203 CrossRef CAS.
  10. C. C. Martens and J. Y. Fang, J. Chem. Phys., 1997, 106, 4918 CrossRef CAS.
  11. M. Ovchinnikov and V. A. Apkarian, J. Chem. Phys., 1998, 108, 2277 CrossRef.
  12. V. S. Batista and W. H. Miller, J. Chem. Phys., 1998, 108, 498 CrossRef CAS.
  13. D. Antoniou and S. D. Schwartz, J. Chem. Phys., 1998, 108, 3620 CrossRef CAS.
  14. R. Egger and C. H. Mak, Phys. Rev. B, 1994, 50, 15210 CrossRef CAS.
  15. M. Topaler and N. Makri, J. Chem. Phys., 1994, 101, 7500 CrossRef CAS.
  16. F. Matzkies and U. Manthe, J. Chem. Phys., 1997, 106, 2646 CrossRef CAS.
  17. A. D. Hammerich, R. Kosloff and M. A. Ratner, Chem. Phys. Lett., 1990, 171, 97 CrossRef CAS.
  18. R. Baer and R. Kosloff, J. Chem. Phys., 1997, 106, 8862 CrossRef CAS.
  19. P. Jungwirth, E. Fredji and R. B. Gerber, J. Chem. Phys., 1997, 107, 8963 CrossRef.
  20. R. B. Gerber, V. Buch and M. A. Ratner, Chem. Phys. Lett., 1982, 91, 173 CrossRef CAS.
  21. E. J. Heller, J. Chem. Phys., 1975, 62, 1544 CrossRef CAS.
  22. E. J. Heller, J. Chem. Phys., 1976, 65, 4979 CrossRef CAS.
  23. E. J. Heller, J. Chem. Phys., 1981, 75, 2923 CrossRef CAS.
  24. M. J. Davis and E. J. Heller, J. Chem. Phys., 1979, 71, 3383 CrossRef CAS.
  25. A. Diz, E. Deumens and Y. Ohrn, Chem. Phys. Lett., 1990, 166, 203 CrossRef CAS.
  26. M. Ben-Nun and R. D. Levine, Chem. Phys., 1995, 201, 163 CrossRef CAS.
  27. N. P. Blake and H. Metiu, J. Chem. Phys., 1995, 103, 4455 CrossRef CAS.
  28. N. Markovic and G. D. Billing, Chem. Phys., 1997, 224, 53 CrossRef CAS.
  29. M. Ben-Nun and T. J. Martinez, J. Chem. Phys., 1998, 108, 7244 CrossRef CAS.
  30. M. Ben-Nun and T. J. Martinez, J. Chem. Phys., 1998, 109 Search PubMed.
  31. R. Silbey and R. A. Harris, J. Phys. Chem., 1989, 93, 7062 CrossRef CAS.
  32. B. Jackson, J. Chem. Phys., 1989, 90, 1458 CrossRef.
  33. J. Frenkel, Wave Mechanics, Clarendon, Oxford, 1934 Search PubMed.
  34. S. M. Anderson, J. I. Zink and D. Neuhauser, Chem. Phys. Lett., 1998, 291, 387 CrossRef CAS.
  35. R. Kosloff, J. Chem. Phys., 1988, 92, 2087 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.