Establishing the occupation of supercage sites by silver ions using the response of partially silver-exchanged zeolite X- and Y-modified electrodes

(Note: The full text of this document is currently only available in the PDF Version )

Mark D. Baker and Chandana Senaratne


Abstract

Exclusive occupancy of the sodalite cage and hexagonal-prism (small-channel network) sites of zeolites X and Y by silver ions results in an attenuated electrochemical response of zeolite-modified electrodes (ZMEs) compared with the case where silver ions occupy supercage sites. When silver ions located in the small-channel network, the initial redox current was a minimum, and grew slowly as the electrode was repeatedly cycled. Electrodes showed the reverse behavior when silver ions resided in the supercages, in that the initial redox current was a maximum and decayed rapidly. The maximum current due to silver ions in the small-channel network, computed using the peak current for the oxidation recorded in NaNO3, is less than 10 µA per Ag+ ion per unit cell (uc). In contrast, modified electrodes in which silver ions occupy supercage sites produced maximum peak currents of ca. 200 µA per Ag+ ion per uc in the same electrolyte. In this paper we use this information to identify the general locations of silver ions in X and Y zeolites. At less than 5 Ag+ ions uc-1, silver ions preferentially occupy supercage sites in zeolite Y. In zeolite X silver ions exclusively locate in the small-channel network at loadings of less than 5 Ag+ ions uc-1.


References

  1. R. M. Barrer, Pure Appl. Chem., 1980, 52, 2143 CAS.
  2. H. S. Sherry, in Ion Exchange, ed. J. A. Marinsky, Marcel Dekker, 1969, vol. 2, pp. 89–133 Search PubMed.
  3. R. M. Barrer, L. V. C. Rees and M. Shamsuzzoha, J. Inorg. Nucl. Chem., 1966, 28, 629 CAS.
  4. H. S. Sherry, J. Colloid Interface Sci., 1968, 28, 288 CAS.
  5. H. S. Sherry, J. Phys. Chem., 1968, 72, 4086 CrossRef CAS.
  6. R. M. Barrer, J. A. Davies and L. V. C. Rees, J. Inorg. Nucl. Chem., 1969, 31, 2599 CAS.
  7. A. Dyer, R. B. Gettins and J. G. Brown, J. Inorg. Nucl. Chem., 1970, 32, 2389 CAS.
  8. M. L. Constenoble, W. J. Mortier and J. B. Uytterhoeven, J. Chem. Soc., Faraday Trans. 1, 1976, 72, 1877 RSC.
  9. M. Brown and H. S. Sherry, J. Phys. Chem., 1971, 75, 3855 CrossRef.
  10. E. Hoinkis and H. W. Levi, Ion Exch. Process Ind., Pap. Conf. 1969, 1970, 339 Search PubMed.
  11. H. S. Sherry, in Advances in Chemistry Series 101, ed. E. M. Flanigen and L. B. Sand, American Chemical Society, Washington DC, 1971 Search PubMed.
  12. L. M. Brown, H. S. Sherry and F. J. Krambeck, J. Phys. Chem., 1971, 75, 3846 CrossRef CAS.
  13. H. S. Sherry, J. Phys. Chem., 1966, 70, 1158 CrossRef CAS.
  14. B. K. G. Theng, E. Vansant and J. B. Uytterhoeven, Trans. Faraday Soc., 1968, 64, 3370 RSC.
  15. W. H. Baur, Am. Mineral., 1964, 49, 697 CAS.
  16. C. Senaratne and M. D. Baker, J. Phys. Chem., 1994, 98, 13687 CrossRef CAS.
  17. M. D. Baker and C. Senaratne, Anal. Chem., 1992, 64, 697 CrossRef.
  18. A. Dyer and R. B. Gettins, Ion Exch. Process Ind., Pap. Conf. 1969, 1970, 357 Search PubMed.
  19. A. Dyer and R. B. Gettins, J. Inorg. Nucl. Chem., 1970, 32, 2401 CAS.
  20. C. Senaratne and M. D. Baker, J. Electroanal. Chem., 1992, 332, 357 CrossRef CAS.
  21. C. Senaratne, J. Zhang, M. D. Baker, C. A. Bessel and D. R. Rolison, J. Phys. Chem., 1996, 100, 5849 CrossRef.
  22. H. S. Sherry, J. Colloid Interface Sci., 1968, 28, 288 CAS.
  23. M. D. Baker and C. Senaratne, US Patent 5,733,437, March 31, 1998.
  24. M. D. Baker and C. Senaratne, US Patent 5,730,857, March 24, 1998.
  25. S. Leutwyler and E. Schumacher, Chimia, 1977, 31, 475 CAS.
  26. K. R. Franklin, R. P. Townsend, S. J. Whelan and C. J. Adams, Proceedings of the Seventh International Conference on Zeolites, Tokyo, 1986, ed. Y. Murakami, A. Ijima and J. M. Ward, Elsevier, Amsterdam, 1986 Search PubMed.
  27. R. Harjula, J. Lehto, J. H. Pothuis, A. Dyer and R. P. Townsend, J. Chem. Soc., Faraday Trans., 1993, 89, 971 RSC.
  28. M. D. Baker, C. Senaratne and J. Zhang, J. Chem. Soc., Faraday Trans., 1992, 88, 3187 RSC.
  29. P. Allongue and E. Souteyrand, J. Electroanal. Chem., 1990, 286, 217 CrossRef CAS.
  30. B. R. Shaw, K. Creasy, C. L. Lanczycki, J. Sargeant and M. Tirhado, J. Electrochem. Soc., 1988, 135, 869 CAS.
  31. D. R. Rolison, R. J. Nowak, T. A. Welsh and C. G. Murray, Talanta, 1991, 38, 27 CrossRef CAS.
  32. A. J. Bard and T. E. Mallouk, in Molecular Design of Electrode Surfaces, ed. R. W. Murray, John Wiley & Sons, New York, 1992 Search PubMed.
  33. M. D. Baker and C. Senaratne, in Frontiers of Electrochemistry, Electrochemistry of Novel Materials, ed. P. N. Ross and J. Lipkowski, VCH, vol. 33, 1994 Search PubMed.
  34. D. R. Rolison, in Advanced Zeolite Science and Applications, ed. J. C. Jansen, M. Stocker, H. G. Karge and J. Weitkamp, Elsevier, Amsterdam, Stud. Surf. Sci. Catal., 1994, 85, 543 Search PubMed.
  35. A. Walcarius, Electroanalysis, 1996, 8, 971 CAS.
  36. D. H. Brouwer and M. D. Baker, J. Phys. Chem., 1997, 101, 10390 Search PubMed.
  37. M. L. Constenoble and A. Maes, J. Chem. Soc., Faraday Trans. 1, 1978, 74, 131 RSC.
  38. A. Maes and A. Cremers, J. Chem. Soc., Faraday Trans. 1, 1978, 74, 136 RSC.
  39. E. Vansant and J. B. Uytterhoeven, Adv. Chem. Ser., 1971, 101, 426 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.