Electrochemical insitu STM study of phase formation during Ag and Al electrodeposition on Au(111) from a room temperature molten salt

(Note: The full text of this document is currently only available in the PDF Version )

Christine A. Zell, Frank Endres and Werner Freyland


Abstract

The electrodeposition of Ag and Al on flame annealed Au(111) films from an acidic aluminium chloride–1-methyl-3-butylimidazolium chloride room temperature molten salt has been investigated by electrochemical scanning tunneling microscopy, cyclic voltammetry and potential step experiments. The cyclic voltammogram of Ag on Au(111) is characterized by adsorption controlled Ag underpotential deposition (upd) and diffusion controlled Ag overpotential deposition (opd). Starting from the anodic limit, bulk oxidation of Au is observed to start near +1.25V vs. Ag/Ag+ reference electrode (RE). In the upd range, two dimensional Ag islands form which merge in a coherent Ag monolayer near 0.05 V vs. RE. With further reduction of the potential, a second monolayer grows. The corresponding chronoamperometric measurements show exponential behaviour with time constants of the order 10 s-1 consistent with a Langmuir adsorption model. In the opd range, a diffusion controlled layer by layer growth of Ag clusters occurs, the bulk Ag+ diffusion coefficient being (1.4±0.2)×10-6 cm2 s-1. Alloying of Ag with codeposited Al from the electrolyte has to be considered. For the Al electrodeposition on Au(111), strong indications for alloying have been observed starting at a potential of +0.95 V vs. Al/Al3+ RE. Below +0.55V, the formation of two dimensional Al islands is seen followed by a three dimensional growth whereby a strong tendency for alloying has to be considered.


References

  1. R. Sonnenfeld and P. K. Hansma, Science, 1990, 232, 211.
  2. H.-Y. Liu, F. R. F. Fan, C. W. Lin and A. J. Bard, J. Am. Chem. Soc., 1986, 108, 3838 CrossRef CAS.
  3. Nanoscale Probes of the solid/liquid Interface, Nato ASI Series E 288, ed. A. A. Gewirth and H. Siegenthaler, Kluwer Academic Publishers, Dordrecht, 1995 Search PubMed.
  4. Electrochemical Nanotechnology, ed. W. J. Lorenz and W. Plieth, Wiley-VCH, Weinheim, 1998 Search PubMed.
  5. T. Will, M. Dietterle and D. M. Kolb, in ref. 3, pp. 137–163 and references therein.
  6. R. J. Nichols, in ref. 3, pp. 163–183 and references therein.
  7. G. Staikov and W. J. Lorenz, in ref. 3, p. 215 and references therein.
  8. S. G. Corcoran, G. S. Chakrarova and K. Sieradzki, J. Electroanal. Chem., 1994, 377, 85 CrossRef CAS; Phys. Rev. Lett., 1993, 71, 1585 Search PubMed.
  9. K. Ogaki and K. J. Itaya, Electrochim. Acta, 1995, 40, 1249 CrossRef CAS; T. Hachiya and K. Itaya, Ultramicroscopy, 1992, 42–44, 445 CrossRef CAS.
  10. S. Garcia, D. Salinas, C. Mayer, E. Schmidt, G. Staikov and W. J. Lorenz, Electrochim. Acta, 1998, 43, 3007 CrossRef CAS.
  11. D. M. Kolb, in Structure of Electrified Interfaces, ed. J. Lipkowki and P. N. Ross, Jr., VCH Publishers, New York, USA, 1993 Search PubMed.
  12. J. M. Dona and J. González-Velasco, Surf. Sci., 1992, 274, 205 CrossRef CAS.
  13. Chemistry of nonaqueous solutions: current progress, ed. G. Mamantov and A. I. Popov, VCH, Weinheim, 1994 Search PubMed.
  14. C. L. Hussey, in ref. 13 and references therein.
  15. H. L. Chum, V. R. Koch, L. L. Miller and R. A. Osteryoung, J. Am. Chem. Soc., 1975, 97, 3264 CrossRef CAS.
  16. J. S. Wilkes, J. A. Levisky, R. A. Wilson and C. L. Hussey, Inorg. Chem., 1982, 21, 1263 CrossRef CAS.
  17. J. Robinson and R. A. Osteryoung, J. Electrochem. Soc., 1980, 127, 122 CAS.
  18. R. T. Carlin, W. Crawford and M. Bersch, J. Electrochem. Soc., 1992, 139, 2720 CAS.
  19. Q. Liao, W. R. Pittner, G. Stewart, C. L. Hussey and G. R. Stafford, J. Electrochem. Soc., 1997, 144, 936 CAS.
  20. X.-H. Xu and C. L. Hussey, J. Electrochem. Soc., 1992, 139, 1295 CAS.
  21. F. Endres, W. Freyland and B. Gilbert, Ber. Bunsen-Ges. Phys. Chem., 1997, 101, 968; F. Endres and W. Freyland, J. Phys. Chem. B, 1998, 102, 10228 CrossRef CAS.
  22. M. Klein and G. Schwitzgebel, Rev. Sci. Instrum., 1997, 68, 3099 CrossRef CAS.
  23. R. Greet, R. Peat, L. M. Peter, D. Pletcher and J. Robinson, Instrumental Methods in Electrochemistry, Ellis Horwood, New York, 1990 Search PubMed.
  24. C. A. Zell, Diploma thesis, Universität Karlsruhe, 1998.
  25. R. T. Carlin, H. C. De Long, J. Fuller and P. C. Trulove, J. Electrochem. Soc., 1998, 145, 1598 CAS.
  26. E. Budevski, G. Staikov and W. J. Lorenz, Electrochemical Phase Formation and Growth, VCH, Weinheim, 1996 Search PubMed.
  27. E. Bosco and S. K. Rangarajan, J. Electroanal. Chem., 1980, 363, 1673.
  28. J. Divisek, B. Steffen, U. Stimmig and W. Schmickler, J. Electroanal. Chem., 1997, 440, 169 CrossRef CAS.
  29. D. M. Kolb, R. Ullmann and T. Will, Science, 1997, 275, 1097 CrossRef CAS.
  30. D. M. Kolb, A. S. Dakkouri and N. Batina, in ref. 3, p. 263.
  31. Binary Alloy Phase Diagrams, ed. T. B. Massalski, ASM International, Materials Park, Ohio, 1990, 2nd edn Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.