The temperature-induced changes in hydrogen bonding of decan-1-ol in the pure liquid phase studied by two-dimensional Fourier transform near-infrared correlation spectroscopy

(Note: The full text of this document is currently only available in the PDF Version )

aw A. Czarnecki and Yukihiro Ozaki


Abstract

Fourier transform near-infrared (FT-NIR) spectra of decan-1-ol in the pure liquid phase were investigated in the regions of the first and second overtones of the OH stretching vibration over the temperature range 15–76°C. The dynamics of temperature-induced changes in the hydrogen bonding were explored by the 2D correlation approach. It was found that the first overtone of the monomer band is split into two peaks (7087 and 7114 cm-1). The peaks originate from the rotational isomerism of the OH group. Although the trans-isomer (at 7114 cm-1) is more stable than the gauche-isomer (at 7087 cm-1), the intensity of the band due to the former is weaker in the pure liquid phase. In dilute solutions the situation is reversed. This effect can be explained by higher accessibility of the OH proton in the trans-position. Therefore, the population of the free protons in the trans-position is reduced faster with increase in concentration. The band attributed to the free terminal OH groups in open chain polymers was not observed in the 2D correlation spectra of neat decan-1-ol. As for butanols, studied previously, the populations of the polymers and cyclic dimers vary faster than that of the monomers. When the temperature is raised, the population of the monomers increases faster where that of the polymers decreases more slowly. Hence it is concluded that the growth in the population of the monomeric species comes from dissociation of the intermediate species. These 2D correlation studies on alcohols in the pure liquid state suggest that the degree of association in the saturated straight-chain alcohols decreases with increase in chain length.


References

  1. G. C. Pimentel and A. L. McClellan, The Hydrogen Bond, Freeman, San Francisco, 1960 Search PubMed.
  2. S. N. Vinogradov and R. H. Linnell, The Hydrogen Bond, Reinhold, New York, 1971 Search PubMed.
  3. C. Bourderon and C. Sandorfy, J. Chem. Phys., 1973, 59, 2527 CAS.
  4. M. Iwahashi, Y. Hayashi, N. Hachiya, H. Matsuzawa and H. Kobayashi, J. Chem. Soc., Faraday Trans., 1993, 89, 707 RSC.
  5. M. Iwahashi, N. Hachiya, Y. Hayashi, H. Matsuzawa, Y. Liu, M. A. Czarnecki, Y. Ozaki, T. Horiuchi and M. Suzuki, J. Phys. Chem., 1995, 99, 4155 CrossRef CAS.
  6. Y. Liu, M. A. Czarnecki, Y. Ozaki, M. Iwahashi and M. Suzuki, Appl. Spectrosc., 1993, 47, 2169 CAS.
  7. M. A. Czarnecki, M. Czarnecka, Y. Liu, Y. Ozaki, M. Suzuki and M. Iwahashi, Spectrochim. Acta Part A, 1995, 51, 1005 CrossRef.
  8. W. A. P. Luck and W. Dietter, J. Mol. Struct., 1967–68, 1, 261 Search PubMed.
  9. C. Sandorfy, in The Hydrogen Bond—Recent Developments in Theory and Experiments, ed. P. Schuster, G. Zundel and C. Sandorfy, North-Holland, Amsterdam, 1976, ch. 13, p. 615 Search PubMed.
  10. I. Noda, Y. Liu, Y. Ozaki and M. A. Czarnecki, J. Phys. Chem., 1995, 99, 3068 CrossRef CAS.
  11. I. Noda, Appl. Spectrosc., 1990, 44, 550 CAS.
  12. I. Noda, Appl. Spectrosc., 1993, 47, 1329 CAS.
  13. M. A. Czarnecki, Appl. Spectrosc., 1998, 52, 1583 CAS.
  14. Y. Liu, Y. Ozaki and I. Noda, J. Phys. Chem., 1996, 100, 7326 CrossRef CAS.
  15. L. Wilson, R. B. de Alencastro and C. Sandorfy, Can. J. Chem., 1985, 63, 40 CAS.
  16. C. Duboc, Spectrochim. Acta, Part A, 1974, 30, 431 CrossRef.
  17. M. Kunst, D. van Duijn and P. Bordevijk, Ber. Bunsen-Ges. Phys. Chem., 1979, 83, 840 Search PubMed.
  18. A. N. Fletcher, J. Phys. Chem., 1972, 76, 2562 CrossRef CAS.
  19. S. Singh and C. N. R. Rao, J. Phys. Chem., 1967, 71, 1074 CrossRef CAS.
  20. M. A. Czarnecki, H. Maeda, Y. Ozaki, M. Suzuki and M. Iwahashi, Appl. Spectrosc., 1998, 52, 994 CAS.
  21. M. A. Czarnecki, H. Maeda, Y. Ozaki, M. Suzuki and M. Iwahashi, J. Phys. Chem. A, 1998, 102, 9117 CrossRef CAS.
  22. M. A. Czarnecki, Y. Liu, Y. Ozaki, M. Suzuki and M. Iwahashi, Appl. Spectrosc., 1993, 47, 2162 CAS.
  23. I. Noda, presented at AIRS II, Durham, NC, 1996.
  24. V. Zanker, Z. Phys. Chem., 1952, 200, 250 CAS.
  25. B. G. Osborne and T. Fearn, in Near Infrared Spectroscopy in Food Analysis, Longman, New York, 1986, ch. 2, p. 28 Search PubMed.
  26. A. S. Bonanno and R. P. Griffiths, J. Near Infrared Spectrosc., 1993, 1, 13 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.