Unimolecular phase space theory rates by inversion of angular momentum-conserved partition function

(Note: The full text of this document is currently only available in the PDF Version )

Wendell Forst


Abstract

A simplified phase space theory (PST) of angular momentum-conserving microcanonical rate constant at specified total angular momentum J in unimolecular fragmentation under a central potential is proposed via the reverse association of fragments. Angular momentum-conserved rotational–translational sum/density of states of fragments is approximated by interpolation between "‘high-J'' and ""low-J'' states (Chem. Phys. Lett., 1996, 262, 539), from which is obtained in closed form the corresponding J-conserved partition function Qxi(J); this represents the core result of this work [eqn. (20)]. A relatively simple numerical Laplace inversion routine of the product of Qxi(J) and the vibrational partition function accomplishes in a single stroke the inversion that leads immediately to the microcanonical rate constant k(E,J)PST. Averaging of Qxi(J) over J leads directly to the canonical (thermal) PST rate constant for dissociation. The procedure is checked against available more elaborate PST results and is illustrated on cases representing five different combinations of fragment symmetries: linear+atom, sphere+atom, linear+linear, sphere+linear and sphere+sphere. The method requires minimal computational effort and is particularly efficient for calculations involving large molecules and large angular momenta.


References

  1. P. Pechukas and J. C. Light, J. Chem. Phys., 1965, 42, 3281 CrossRef CAS; P. Pechukas, J. C. Light and C. Rankin, J. Chem. Phys., 1966, 44, 794 CrossRef CAS.
  2. (a) W. J. Chesnavich and M. T. Bowers, J. Am. Chem. Soc., 1976, 98, 8301 CrossRef; (b) J. Chem. Phys., 1977, 66, 2306 Search PubMed; (c) J. Am. Chem. Soc., 1977, 99, 1705 Search PubMed; (d) J. Chem. Phys., 1978, 68, 901 Search PubMed; J. Troe, J. Chem. Phys., 1983, 79, 6017 Search PubMed Appendix C.
  3. T. Baer and W. L. Hase, Unimolecular Reaction Dynamics, Oxford University Press, New York, 1996, Ch. 7.4 Search PubMed.
  4. C. E. Klots, J. Phys. Chem., 1971, 75, 1526 CrossRef CAS; Z. Naturforsch., Teil A, 1972, 27, 553 Search PubMed.
  5. W. Forst, Theory of Unimolecular Reaction, Academic Press, New York, 1973, Ch. 6 Search PubMed.
  6. J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, 1967, Ch. 13 Search PubMed.
  7. W. Forst, Chem. Phys. Lett., 1996, 262, 539 CrossRef CAS.
  8. C. E. Klots and J. Polach, J. Phys. Chem., 1995, 99, 15396 CrossRef CAS Cf. also M. Olzmann and J. Troe, Ber. Bunsenges. Phys. Chem., 1992, 96, 1327 Search PubMed; ibid. 1984, 98, 1562 CAS.
  9. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, NBS Washington, 1972, p. 297 Search PubMed.
  10. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, New York, 1965, p. 649, item 6.284 Search PubMed.
  11. W. Forst, J. Comput. Chem., 1996, 17, 954 CrossRef CAS.
  12. JANAF Thermochemical Tables, NSRDS-NBS 37, Washington, 2nd edn., 31971 Search PubMed.
  13. H. Katagiri and S. Kato, J. Chem. Phys., 1993, 99, 8805 CrossRef CAS.
  14. B. M. Toselli and J. R. Barker, J. Chem. Phys., 1989, 91, 2239 CrossRef CAS.
  15. W. Forst, Chem. Phys. Lett., 1994, 231, 43 CrossRef CAS.
  16. D. M. Wardlaw and R. A. Marcus, J. Chem. Phys., 1985, 83, 3462 CrossRef.
  17. W. Tsang and J. T. Herron, J. Phys. Chem. Ref. Data, 1991, 20, 609 CAS.
  18. R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr and J. Troe, J. Phys. Chem. Ref. Data, 1992, 21, 1125 CAS.
  19. L. B. Harding, Ber. Bunsenges. Phys. Chem., 1997, 101, 363 CAS.
  20. M. Brouard, M. T. Macpherson and M. J. Pilling, J. Phys. Chem., 1989, 93, 4047 CrossRef CAS.
  21. W. Forst, J. Phys. Chem., 1991, 95, 3612 CrossRef CAS.
  22. D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker and J. Warnatz, J. Phys. Chem. Ref. Data, 1992, 21, 411 CAS.
  23. C. J. Cobos and J. Troe, Z. Phys. Chem., 1990, 167, 129 CAS.
  24. W. Tsang and R. F. Hampson, J. Phys. Chem. Ref. Data, 1986, 15, 1087 CAS.
  25. P. H. Stewart, G. P. Smith and D. M. Golden, Int. J. Chem. Kinet., 1989, 21, 923 CAS.
  26. L. R. Khundkar, J. L. Knee and A. H. Zewail, J. Chem. Phys., 1987, 87, 77 CrossRef CAS.
  27. S. J. Klippenstein, L. R. Khundkar, A. H. Zewail and R. A. Marcus, J. Chem. Phys., 1988, 89, 4761 CrossRef CAS.
  28. I. Nadler, J. Pfab, H. Reisler and C. Wittig, J. Chem. Phys., 1984, 81, 653 CrossRef CAS.
  29. W. Tsang, J. Phys. Chem. Ref. Data, 1992, 21, 753 CAS.
  30. I. R. Sims and I. W. M. Smith, J. Chem. Soc., Faraday Trans., 1993, 89, 1 RSC; Cf. D. L. Yang and M. C. Lin, in The Chemical Dynamics and Kinetics of Small Radicals, ed. K. Liu, A. Wagner, World Scientific, Singapore, 1995, Ch. 5 Search PubMed.
  31. S. J. Klippenstein and R. A. Marcus, J. Chem. Phys., 1989, 91, 2280 CrossRef CAS.
  32. E. D. Potter, M. Gruebele, L. R. Khundkar and A. H. Zewail, Chem. Phys. Lett., 1989, 164, 463 CrossRef CAS.
  33. S. K. Kim, E. R. Lovejoy and C. B. Moore, J. Chem. Phys., 1995, 102, 3202 CrossRef CAS.
  34. D. M. Wardlaw and R. A. Marcus, J. Phys. Chem., 1986, 90, 5383 CrossRef CAS.
  35. S. H. Robertson, M. J. Pilling, D. L. Baulch and N. J. B. Green, J. Phys. Chem., 1995, 99, 13452 CrossRef CAS.
  36. J. P. Hessler and P. J. Ogren, J. Phys. Chem., 1996, 100, 984 CrossRef CAS.
  37. A. F. Wagner and D. M. Wardlaw, J. Phys. Chem., 1988, 92, 2462 CrossRef CAS.
  38. P. H. Stewart, C. W. Larson and D. M. Golden, Combust. Flame, 1989, 75, 25 CAS.
  39. J. Troe, J. Chem. Phys., 1983, 79, 6017 CrossRef CAS.
  40. J. Troe, (a) Ber. Bunsenges. Phys. Chem., 1997, 101, 438 Search PubMed; J. Chem. Soc., Faraday Trans.; (b) 1991, 87, 2299; (c) 1997, 93, 885 Search PubMed.
  41. C. J. Cobos and J. Troe, J. Chem. Phys., 1985, 83, 1010 CrossRef CAS.
  42. W. Forst, Comput. Chem., 1996, 20, 419 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.