Carbon-13 nuclear magnetic relaxation in supercooled liquid and glassy maltose

(Note: The full text of this document is currently only available in the PDF Version )

R Hans Tromp, Dagmar van Dusschoten, Roger Parker and Stephen G. Ring


Abstract

13C longitudinal relaxation rates (T1-1) in highly viscous liquid and solid amorphous maltose, its mixtures with water and methanol, and also crystalline maltose monohydrate, have been measured as a function of temperature, above and below the calorimetric glass transition temperatures of the amorphous materials. From the results it is concluded that, at temperatures up to 60°C below the glass transition temperature, the carbon atoms in the exocyclic hydroxymethyl groups of maltose are more mobile than the endocyclic carbon atoms. A few percent of water is sufficient to considerably enhance amorphous maltose mobility. At temperatures close to the glass transition methanol in amorphous maltose–methanol mixtures retains a high degree of rotational mobility which is decoupled from the bulk viscosity.


References

  1. Flavor Encapsulation, ed. S. J. Risch and G. A. Reineccius, ACS Symp. Ser., 370, 1988 Search PubMed.
  2. Formulation and Delivery of Proteins and Peptides, ed. J. L. Cleland and R. Langer, ACS Symp. Ser., 567, 1994 Search PubMed.
  3. T. R. Noel, R. Parker and S. G. Ring, Carbohydr. Res., 1996, 282, 193 CrossRef CAS.
  4. N. G. McCrum, B. E. Read and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids, Wiley, London, 1967 Search PubMed.
  5. G. P. Johari and M. Goldstein, J. Chem. Phys., 1971, 55, 4245 CAS.
  6. C. A. Angell, J. M. Sare and E. J. Sare, J. Phys. Chem., 1978, 82, 2622 CrossRef CAS.
  7. K. Schmidt-Rohr and H. W. Speiss, Multidimensional Solid-State NMR and Polymers, Academic Press, London, 1994, pp. 277–296 Search PubMed.
  8. B. Geil, F. Fujara and H. Sillescu, J. Magn. Reson., 1998, 130, 18 CrossRef CAS.
  9. P. D. Orford, R. Parker, S. G. Ring and A. C. Smith, Int. J. Biol. Macromol., 1989, 11, 91 CrossRef CAS.
  10. D. A. Torchia, J. Magn. Reson., 1978, 30, 613 CAS.
  11. H. W. Spiess, in Dynamic NMR Spectroscopy. NMR: Basic Principles and Progress, Springer Verlag, 1978, vol. 15, p. 55 Search PubMed.
  12. See, for example, ref. 7, pp. 126–128.
  13. R. H. Tromp, R. Parker and S. G. Ring, J. Chem. Phys., 1997, 107, 6038 CrossRef CAS.
  14. G. Hinze, H. Sillescu and F. Fujara, Chem. Phys. Lett., 1995, 232, 154 CrossRef CAS.
  15. D. Girlich and H.-D. Ludemann, Z. Naturforsch., 1993, 48c, 407 Search PubMed.
  16. G. J. Quigley, A. Sarko and R. H. Marchessault, J. Amer. Chem. Soc., 1970, 92, 5834 CrossRef CAS.
  17. J. E. Hodge, J. A. Rendleman and E. C. Nelson, Cereal Sci. Today, 1972, 17, 180 Search PubMed.
  18. K. Kobayashi, M. Yokoi, S. Kuroda and E. Kubota, Bull. Chem. Soc. Jpn., 1987, 60, 2535 CAS.
  19. G. S. Parks, L. E. Barton, M. E. Spagt and J. W. Richardson, J. Phys., 1934, 5, 193 Search PubMed.
  20. R. H. Tromp, R. Parker and S. G. Ring, Carbohydr. Res., 1997, 303, 199 CrossRef CAS.
  21. B. J. Aldous, F. Franks and A. L. Greer, J. Mater. Sci., 1997, 32, 301 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.