An abinitio quasi-classical direct dynamics investigation of the F+C2H4→C2H3F+H product energy distributions

(Note: The full text of this document is currently only available in the PDF Version )

Kim Bolton, H Bernhard Schlegel, William L. Hase and Kihyung Song


Abstract

A direct dynamics technique, using energies, forces and second derivatives calculated at the UHF/6–31G* level of theory, was used to investigate product energy distributions of the F+C2H4→C2H3F+H collision reaction. The shifting and broadening of the product translational energy distribution as the system moves from the exit-channel barrier to the products was studied. Since properties associated with the rupturing C···H bond are similar for the C2H5 and C2H4F exit-channel barriers, and integration of the C2H5→C2H4+H reaction is approximately 2.5 times faster than the C2H4F→C2H3F+H reaction, trajectories of the former reaction were propagated to gain insight into the exit-channel dynamics. Ensemble averaged results for C2H5 dissociation are well described by a model based on isotropic exit-channel dynamics which assumes that the product relative translational distribution arises from the centrifugal potential and relative translational energy distributions at the exit-channel barrier plus the exit-channel potential release. The width of the product translational energy distribution is sensitive to overall rotational angular momentum and its partitioning between C2H4···H orbital angular momentum and C2H4 rotational angular momentum. The simulated product translational energy distribution for the C2H4F→C2H3F+H reaction is broadened by relative translation–vibrational couplings in the exit-channel and is similar to the distribution used to fit crossed molecular beam data. Approximately 50% of the available energy is in product relative translation, which also agrees with experiment. RRKM calculations indicate that a second reaction mechanism, involving 1–2 hydrogen migration prior to C···H bond fission, does not significantly contribute to C2H3F+H product formation.


References

  1. D. R. Lide, Jr. and D. Christensen, Spectrochim. Acta, 1961, 17, 665 CrossRef CAS.
  2. M. C. Lin and M. H. Back, Can. J. Chem., 1966, 44, 2357 CAS.
  3. L. F. Loucks and K. J. Laidler, Can. J. Chem., 1967, 45, 2795 CAS.
  4. J. M. Parson and Y. T. Lee, J. Chem. Phys., 1972, 56, 4658 CAS.
  5. J. L. Duncan, I. J. Wright and D. Van Lerberghe, J. Mol. Spectrosc., 1972, 42, 463 CAS.
  6. W. E. Jones, S. D. MacKnight and L. Teng, Chem. Rev., 1973, 73, 407 CrossRef CAS.
  7. J. V. Michael and G. N. Suess, Chem. Phys., 1973, 58, 2807.
  8. J. G. Moehlmann, J. T. Gleaves, J. W. Hudgens and J. D. McDonald, J. Chem. Phys., 1974, 60, 4790 CrossRef.
  9. J. A. Cowfer and J. V. Michael, Chem. Phys., 1975, 62, 3504 CrossRef CAS.
  10. J. M. Farrar and Y. T. Lee, J. Chem. Phys., 1976, 65, 1414 CrossRef CAS.
  11. J. H. Lee, J. V. Michael, W. A. Payne and L. J. Stief, J. Chem. Phys., 1978, 68, 1817 CrossRef CAS.
  12. M. G. Moss, M. D. Ensminger, G. M. Stewart, D. Mordaunt and J. D. McDonald, J. Chem. Phys., 1980, 73, 1256 CrossRef CAS.
  13. G. V. Pukals'kaya, N. F. Chebotarev, V. B. Kolovskii and S. Ya. Pashezhetskii, Kinet. Katal., 1980, 21, 1063 Search PubMed.
  14. K. Sugawara, K. Okuzaki and S. Sato, Chem. Phys. Lett., 1981, 78, 259 CrossRef CAS; Bull. Chem. Soc. Jpn., 1981, 54, 2872 Search PubMed.
  15. P. D. Pacey and J. H. Wimalasena, J. Phys. Chem., 1984, 88, 5657 CrossRef CAS.
  16. A. B. Trenwith, J. Chem. Soc., Faraday Trans. 2, 1986, 82, 457 RSC.
  17. P. D. Lightfoot and M. J. Pilling, J. Phys Chem., 1987, 91, 3373 CrossRef CAS.
  18. Y. Simon, J. F. Foucaut and G. Scacchi, Can. J. Chem., 1988, 66, 2142.
  19. J. W. Davies and M. J. Pilling. In Bimolecular Reactions, ed. M. N. R. Ashfold and J. E. Baggott, Royal Society of Chemistry, London, 1989, pp. 171–208 Search PubMed.
  20. G. N. Robinson, R. E. Continett and Y. T. Lee, J. Chem. Phys., 1990, 92, 275 CrossRef CAS.
  21. M. A. Hanning-Lee, N. J. B. Green, M. J. Pilling and S. H. Robertson, J. Phys. Chem., 1993, 97, 860 CrossRef.
  22. Y. Feng, J. T. Niiranen, A. Benosura, V. D. Knyazev, D. Gutman and W. Tsang, J. Phys. Chem., 1993, 97, 871 CrossRef CAS.
  23. R. A. Marcus, J. Chem. Phys., 1975, 62, 1372 CrossRef CAS.
  24. G. Worry and R. A. Marcus, J. Chem. Phys., 1977, 67, 1636 CrossRef CAS.
  25. V. B. Kontecky, K. Kontecky and L. Salem, J. Am. Chem. Soc., 1977, 99, 842 CrossRef CAS.
  26. D. J. Zvijac and L. C. Light, Chem. Phys., 1977, 21, 411 CrossRef CAS; D. J. Zvijac, S. Mukamel and J. Ross, Chem. Phys., 1977, 67, 2007 CAS.
  27. C. S. Sloane and W. L. Hase, Faraday Discuss. Chem. Soc., 1977, 62, 210 RSC.
  28. W. L. Hase, G. Mrowka, R. J. Brudzynski and and C. S. Sloane, Faraday Discuss. Chem. Soc., 1978, 69, 3548 Search PubMed; 1980, 72, 6321.
  29. D. T. Clar, I. W. Scanlan and J. C. Walton, Chem. Phys. Lett., 1978, 55, 102 CrossRef.
  30. W. L. Hase, R. J. Wolf and and C. S. Sloane, J. Chem. Phys., 1979, 71, 2911 CrossRef CAS; 1982, 76, 2771.
  31. S. Nagase, T. Fueno and K. Morokuma, J. Am. Chem. Soc., 1979, 101, 5849 CrossRef CAS.
  32. M. Quack, Chem. Phys., 1980, 51, 353 CrossRef CAS.
  33. S. Nagase and C. W. Kern, J. Am. Chem. Soc., 1980, 102, 4513 CrossRef CAS.
  34. S. Kato and K. Morokuma, J. Chem. Phys., 1980, 72, 206 CrossRef CAS.
  35. L. B. Hardin, J. Am. Chem. Soc., 1981, 103, 7469 CrossRef.
  36. W. L. Hase, D. M. Ludlow, R. J. Wolf and T. J. Schlick, J. Phys. Chem., 1981, 85, 958 CrossRef CAS.
  37. W. L. Hase and K. C. Bhalla, J. Chem. Phys., 1981, 75, 2807 CrossRef CAS.
  38. W. L. Hase and D. G. Buckowski, J. Comput. Chem., 1982, 3, 335 CrossRef CAS.
  39. W. L. Hase and H. B. Schlegel, J. Phys. Chem., 1982, 86, 3901 CrossRef CAS.
  40. H. B. Schlegel, J. Phys. Chem., 1982, 86, 4878 CrossRef CAS.
  41. H. B. Schlegel, K. C. Bhalla and W. L. Hase, J. Phys. Chem., 1982, 86, 4883 CrossRef CAS.
  42. W. L. Hase, D. G. Buckowski and K. N. Swamy, J. Phys. Chem., 1983, 87, 2754 CrossRef CAS.
  43. K. N. Swamy and W. L. Hase, J. Phys. Chem., 1983, 87, 4715 CrossRef CAS.
  44. J. C. Light, J. Chem. Phys., 1964, 40, 3221 CrossRef CAS.
  45. P. Pechukas and J. C. Light, J. Chem. Phys., 1965, 42, 3281 CrossRef CAS.
  46. S. A. Safron, N. D. Weinstein, D. R. Herschbach and J. C. Tully, Chem. Phys. Lett., 1972, 12, 564 CrossRef CAS.
  47. G. H. Peslherbe, H. Wang and W. L. Hase, J. Am. Chem. Soc., 1996, 118, 2257 CrossRef CAS.
  48. G. H. Peslherbe and W. L. Hase, J. Chem. Phys., 1996, 104, 7882 CrossRef CAS.
  49. C. Doubleday, Jr., K. Bolton, G. H. Peslherbe and W. L. Hase, J. Am. Chem. Soc., 1996, 118, 9922 CrossRef CAS; K. Bolton, W. L. Hase and C. Doubleday, Jr., Ber. Bunsen-Ges. Phys. Chem., 1997, 3, 414.
  50. C. Doubleday, Jr., K. Bolton and W. L. Hase, J. Am. Chem. Soc., 1997, 119, 5251 CrossRef CAS; C. Doubleday, Jr., K. Bolton and W. L. Hase, J. Phys. Chem. A, 1998, 102, 3648 CrossRef CAS.
  51. W. Chen, W. L. Hase and H. B. Schlegel, Chem. Phys. Lett., 1994, 228, 436 CrossRef CAS.
  52. K. Bolton, W. L. Hase and G. H. Peslherbe, in Modern Methods for Multidimensional Computations in Chemistry, ed. D. L. Thompson, Wold Scientific, Singapore, 1998, p. 143 Search PubMed.
  53. J. Ishctwan and M. A. Collins, J. Chem. Phys., 1994, 100, 8080 CrossRef CAS; M. J. T. Jordan, K. C. Thompson and M. A. Collins, J. Chem. Phys., 1995, 102, 5647 CrossRef CAS.
  54. T.-S. Ho and H. Rabitz, J. Chem. Phys., 1996, 104, 2584 CrossRef CAS; T.-S. Ho, T. Hollebeek, H. Rabitz, L. B. Harding and G. C. Schatz, J. Chem. Phys., 1996, 105, 10472 CrossRef CAS.
  55. D. G. Truhlar and J. T. Muckerman. In Atom–Molecule Collision Theory, ed. R. B. Bernstein, Plenum Press, New York, 1979, pp. 505–566 Search PubMed.
  56. G. C. , J. Chem. Phys., 1983, 79, 5386 CrossRef CAS.
  57. K. Bolton, W. L. Hase, H. B. Schlegel and K. Song, Chem. Phys. Lett., 1998, 288, 621 CrossRef CAS.
  58. A. P. Scott and L. Radom, J. Phys. Chem., 1996, 100, 16502 CrossRef CAS.
  59. Since the barriers for C1⋯ H bond rupture and C1→ C2 migration are sharp (the QCISD/6–311G** C1⋯ H and C1→ C2 reaction coordinate harmonic frequencies are 1043i cm–1 and 2199i cm–1, respectively), it is assumed that the transition state structures are similar to those at the potential barriers. For the future, more detailed calculations it would be of interest to consider variational effects in choosing the transition state; J. Villa, A. Gonzalez-Lafont, J. M. Lluch and D. G. Truhlar, J. Am. Chem. Soc., 1998, 120, 5559 Search PubMed.
  60. R. G. Gilbert and S. C. Smith, Theory of Unimolecular and Recombination Reactions, Blackwell, Oxford, 1990 Search PubMed.
  61. T. Baer and W. L. Hase, Unimolecular Reaction Dynamics: Theory and Experiments, Oxford University Press, New York, 1996 Search PubMed.
  62. L. Zhu, W. Chen, W. L. Hase and E. W. Kaiser., J. Phys. Chem., 1993, 97, 311 CrossRef CAS.
  63. CRC Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, Boca Raton, 78th edn., 1997 Search PubMed.
  64. J. L. Duncan, D. C. McKean and P. D. Mallinson, J. Mol. Spectrosc., 1973, 45, 221 CAS.
  65. G. R. Smith and W. A. Guillory, J. Phys. Chem., 1975, 63, 1311 CrossRef CAS.
  66. D. A. McQuarrie, Statistical Mechanics, Harper Collin, New York, 1976 Search PubMed.
  67. W. L. Hase, H. B. Schlegel, V. Balbyshev and M. Page, J. Phys. Chem., 1996, 100, 5354 CrossRef CAS; W. L. Hase, H. B. Schlegel, V. Balbyshev and M. Page, J. Phys. Chem. A, 1997, 101, 5026 CrossRef CAS.
  68. W. L. Hase, R. J. Duchovic, X. Hu, A. Kormonick, K. Lim, D.-H. Lu, G. H. Peslherbe, K. N. Swamy, S. R. Vande Linde, A. J. C. Varandas, H. Wang and R. J. Wolfe, QCPE, 1996, 16, 671 Search PubMed VENUS96 is an enhanced version of MERCURY; W. L. Hase, QCPE, 1983, 3, 453 Search PubMed.
  69. J. P. P. Stewart, QCPE, 1993, 13, 455 Search PubMed; J. Comput. Chem., 1989, 10, 209 Search PubMed.
  70. G. H. Peslherbe, W. L. Hase, VENUS–MOPAC, a General Chemical Dynamics and Semiempirical Direct Dynamics Computer Program, to be released Search PubMed.
  71. M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, J. B. Foresman, M. W. Wong, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. DeFrees, J. Baker, J. J. P. Stewart and J. A. Pople, GAUSSIAN92, Gaussian, Pittsburgh, PA, 1992 Search PubMed.
  72. D. L. Bunker and W. L. J. Hase, Chem. Phys., 1973, 59, 4621 CAS.
  73. S. Chapman and D. L. Bunker, J. Chem. Phys., 1975, 62, 2890 CrossRef CAS; C. S. Sloane and W. L. Hase, Chem. Phys., 1977, 66, 1523 CrossRef CAS.
  74. E. B. Wilson, Jr., J. C. Decius and P. C. Cross, Molecular Vibrations, McGraw-Hill, New York, 1955 Search PubMed.
  75. W. H. Miller, W. L. Hase and C. L. Darling, J. Chem. Phys., 1989, 91, 2863 CrossRef CAS.
  76. J. E. Adams and R. M. Stratt, J. Chem. Phys., 1990, 93, 1332 CrossRef CAS.
  77. K. Bolton, W. L. Hase and H. B. Schlegel, to be submitted.
  78. E. Everhart, Celest. Mech., 1974, 10, 35 Search PubMed.
  79. E. Everhart, in Dynamics of Comets: Their Origin and Evolution, ed. A. Carusi and G. B. Valsecchi, Reidel, Dordrecht, 1985, pp. 185–202 Search PubMed.
  80. K. Boltan and S. Nordholm, J. Comput. Phys., 1994, 113, 320 CrossRef CAS.
  81. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in Fortran; the Art of Scientific Computing, Cambridge University Press, Cambridge, 1992 Search PubMed.
  82. W. Chen, PhD Thesis, Wayne State University, 1995.
  83. T. Helgaker, E. Uggerud and H. Jensen, Chem. Phys. Lett., 1990, 173, 145 CrossRef CAS.
  84. E. Uggerud and T. Helgaker, J. Am. Chem. Soc., 1992, 114, 4266.
  85. W. H. Miller, N. C. Handy and J. E. Adams, J. Chem. Phys., 1980, 72, 99 CrossRef CAS.
  86. B. Efron, SIAM Rev., 1979, 21, 460 Search PubMed.
  87. P. Diaconis and B. Efron, Sci. Am., 1983, 248, 96 Search PubMed.
  88. H. W. Schranz, S. Nordholm and B. C. Freasier, Chem. Phys., 1986, 108, 69 CrossRef CAS; D. L. Clarke, I. Oref, R. G. Gilbert and K. F. Lim, J. Chem. Phys., 1992, 96, 5983 CrossRef CAS; K. Bolton, S. Nordholm, H. W. Schranz and H. W. , J. Phys. Chem., 1995, 99, 2477 CrossRef CAS.
  89. D. G. Truhlar and A. Kupperman, J. Am. Chem. Soc., 1971, 93, 1840 CrossRef.
  90. M. Quack and and J. Troe, Ber. Bunsen-Ges. Phys. Chem., 1974, 78, 240 Search PubMed; 1975,, 79,, 170; 1976, 80, 1140.
Click here to see how this site uses Cookies. View our privacy policy here.