Optical and electrical characterization of a conducting polypyrrole composite prepared by insitu electropolymerization

(Note: The full text of this document is currently only available in the PDF Version )

Jorge Aguilar-Hernàndez and Karin Potje-Kamloth


Abstract

A study of the optical and electrical properties of a conducting polypyrrole–polyoxyphenylene composite, PPy–POP, prepared by insitu electropolymerization is presented. Electropolymerization was performed potentiostatically in a solution of pH 9 which contained the monomers pyrrole, allylphenol and sodium 4-hydroxybenzenesulfonate (4HBS), by applying a potential of 1.25 V vs. SCE. The films obtained were characterized optically by UV/VIS and IR spectroscopy and electrically by measurements of the temperature dependence of the ac and dc conductivity. FTIR measurements indicated that the polymer blend obtained consists of PPy and the insulating polymer poly-2-allyloxyphenylene (POP), whereas the third monomer, 4HBS, is incorporated into the PPy–POP film as dopant for the conducting PPy. Furthermore, optical characterizations show a light degree of overoxidation of PPy in the PPy–POP composite. In the UV/VIS spectra, the formation of both polaron and bipolaron electronic states of the band structure of PPy can be seen, but the IR spectra demonstrate the transition of the PPy structure from a conducting quinoid to benzoid type with increasing polymerization potential. This is accompanied by the introduction of a carbonyl group into the PPy backbone and a reduction of the conjugation length of the polymer chain, which has a strong influence on the conductivity of the polymer composite. Despite this overoxidation process, the PPy–POP film retains a conductive character which allows the growth of thick films. The temperature dependence of the ac and dc conductivity of PPy–POP was investigated. The total ac conductivity, σtot(ω), in the frequency range 102–105 Hz, changes by approximately four orders of magnitude in the range from 77 to 300 K, showing a sub-linear dispersive behavior. The temperature dependence of the dc conductivity of such a polymer composite can be described by Mott's variable range hopping (VRH) model according to σ=σ0 exp[-(T0/T)γ], with γ=1/2


References

  1. J. L. Bredas and G. B. Street, Acc. Chem. Res., 1985, 18, 309 CrossRef CAS.
  2. Y. E. Whang and S. Miyata, in Conjugated Polymers and Related Materials, ed. W. R. Salaneck, I. Lundström and B. Randby, Oxford University Press, Oxford, 1993, p. 149 Search PubMed.
  3. Q. Pei and R. Gian, Synth. Met., 1991, 45, 35 CrossRef CAS.
  4. J. Unsworth, P. C. Innis, B. A. Linn, Z. Jin and G. P. Norton, Synth. Met., 1992, 53, 52 CrossRef CAS.
  5. S. Takeoda, T. Hara, K. Yamamoto and E. Tsuchida, Chem. Lett., 1996, 253.
  6. J. Aguilar-Hernández, J. Skarda and K. Potje-Kamloth, Synth. Met., 1998, 95, 197 CrossRef CAS.
  7. J. L. Bredas, J. C. Scott, K. Yakushi and G. B. Street, Phys. Rev. B, 1984, 30, 1023 CrossRef CAS.
  8. Y. Li and R. Qian, Synth. Met., 1998, 26, 139 CrossRef CAS.
  9. D. Kim, J. Y. Lee, D. K. Moon and C. Y. Kim, Synth. Met., 1995, 69, 471 CrossRef CAS.
  10. E. M. Genies and J. H. Pernaut, J. Electroanal. Chem., 1985, 191, 1515 CrossRef CAS.
  11. K. Yakushi, L. Lauchlin, J. Clarke and G. B. Street, Phys. Rev. B, 1984, 30, 1023 CrossRef CAS.
  12. T. Osaka, T. Momma, S. Komaba and H. Kanagawa, J. Electroanal. Chem., 1994, 372, 201 CrossRef CAS.
  13. T. W. Lewis, G. G. Wallace, C. Y. Kim and D. Y. Kim, Synth. Met., 1997, 84, 403 CrossRef CAS.
  14. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford, 1979 Search PubMed.
  15. B. R. Saunders, R. J. Fleming and K. S. Murray, Chem. Mater., 1995, 7, 1082 CrossRef CAS.
  16. P. Pfluger, G. Weiser, J. C. Scott and G. B. Street, in Handbook of Conducting Polymers, ed. T. A. Skotheim, Marcel Dekker, New York, vol. 2, ch. 38, p. 1369 Search PubMed.
  17. M. Honda, in The Impedance Measurement Handbook, Hewlett-Packard, Avondale, PA, 1994 Search PubMed.
  18. K. Potje-Kamloth and M. Josowicz, Ber. Bunsen-Ges. Phys. Chem., 1992, 96, 1004 CAS.
  19. D. A. Kaplin and S. Qutubudin, Polymer, 1995, 36, 1275 CrossRef CAS.
  20. R. G. Davidson and T. G. Turner, Synth. Met., 1995, 72, 121 CrossRef CAS.
  21. B. Tian and G. Zerbi, J. Chem. Phys., 1990, 92, 3892 CrossRef CAS.
  22. F. Beck, P. Braun and M. Oberst, Ber. Bunsen-Ges. Phys. Chem., 1987, 91, 967 Search PubMed.
  23. B. Tian and G. Zerbi, J. Chem. Phys., 1990, 92, 3886 CrossRef CAS.
  24. G. B. Street, S. E. Lindsay, A. I. Nazzal and K. J. Wynne, Mol. Cryst. Liq. Cryst., 1985, 118, 137 CAS.
  25. Y. Furukawa, S. Tazawa, Y. Fujii and I. Harada, Synth. Met., 1988, 24, 329 CrossRef CAS.
  26. G. Socrates, Group Frequencies, Wiley, New York, 1980 Search PubMed.
  27. M. Gattrell and D. W. Kirk, J. Electrochem. Soc., 1992, 139, 2736 CAS.
  28. H. J. Hediger, Infrarotspektroskopie, Akademische Verlagsgesellschaft, Frankfurt/Main, 1971 Search PubMed.
  29. N. Oyama, T. Osaka, Y. Ohnuki and T. Suzuki, J. Electrochem. Soc., 1987, 134, 3068 CAS.
  30. R. L. McCarley, R. E. Thomas, E. Irene and R. W. Murray, J. Electroanal. Chem., 1990, 290, 79 CrossRef CAS.
  31. T. Osaka, T. Fukuda, K. Ouchi and T. Momma, Thin Solid Films, 1992, 215, 200 CrossRef CAS.
  32. J. Lei, W. Liang and C. R. Martin, Synth. Met., 1992, 48, 301 CrossRef CAS.
  33. T. Osaka, M. Momma and H. Kanagawa, Chem. Lett., 1993, 649 CAS.
  34. A. J. Epstein, H. Rommelmann, R. Bigelow, H. A. Gibson and D. B. Tanner, Phys. Rev. Lett., 1983, 50, 1866; 2020 CrossRef CAS.
  35. O. El Beqqali, M. H. Sadoun, G. Gillaud, M. Gamoudi, M. Benkaddour, A. S. Skal and M. Maitrot, J. Appl. Phys., 1991, 69, 3670 CrossRef CAS.
  36. S. K. Saha, T. K. Mandal, B. M. Mandal and D. Chakravorty, J. Appl. Phys., 1997, 81, 2646 CrossRef CAS.
  37. Y. Hirai, H. Tanaka and T. Nishi, Jpn. J. Appl. Phys., 1987, 26, L401.
  38. W. Brening, G. H. Döhler and H. Heyszenau, Philos. Mag., 1973, 27, 1093 Search PubMed.
  39. F. Zuo, M. Angelopoulus, A. G. MacDiarmid and A. J. Epstein, Phys. Rev. B, 1987, 36, 758.
  40. P. Pfluger, U. M. Gubler and G. B. Street, Solid State Commun., 1984, 49, 911 CrossRef CAS.
  41. J. H. Lee and I. J. Chung, Synth. Met., 1992, 53, 245.
  42. B. A. Lunn, J. Unsworth, N. G. Booth and P. C. Innis, J. Mater. Sci., 1993, 28, 5092 CAS.
  43. Y. Li, R. Qian, K. Imaeda and H. Inokuchi, Polym. J., 1994, 26, 535 Search PubMed.
  44. A. Bhattacharya, A. De and S. Das, Polymer, 1996, 37, 4375 CrossRef CAS.
  45. B. Sixou, N. Mermilliod and J. P. Travers, Europhys. Lett., 1995, 30, 157 Search PubMed.
  46. O. Chauvet, S. Paschen, L. Forro, L. Zuppiroli, P. Bujard, K. Kai and W. Wernet, Synth. Met., 1994, 63, 115 CrossRef CAS.
  47. Y. Min, A. G. MacDiarmid and A. J. Epstein, Polym. Prepr., 1994, 35, 231 Search PubMed.
  48. Y. H. Wang, A. Ray, A. G. MacDiarmid and A. J. Epstein, Phys. Rev. B, 1991, 43, 4373 CrossRef.
  49. E. P. Nakhmedov, U. N. Prigodin and A. N. Samukin, Soc. Phys. JETP, 1989, 31, 368 Search PubMed.
  50. M. Omastosva, S. Kosina, J. Pointek, A. Janke and J. Pavlinec, Synth. Met., 1996, 81, 49 CrossRef CAS.
  51. N. J. Pinto, C. M. Torres, P. K. Kahol and B. J. McCormik, J. Appl. Phys., 1996, 79, 8512 CrossRef CAS.
  52. J. Joo, Z. Oblakowski, G. Du, J. P. Pouget, E. J. Oh, J. M. Wiesinger, Y. Min and A. G. MacDiarmid, Phys. Rev. B, 1994, 49, 2977 CrossRef CAS.
  53. S. N. Mustafaeva, V. A. Aliev and M. M. Asadov, Phys. Solid State, 1998, 40, 41 CrossRef.
  54. R. Shing, A. K. Narula, R. P. Tandon, A. Manshing and S. Chandra, J. Appl. Phys., 1997, 81, 3726 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.