Novel functional materials based on triarylamines–synthesis and application in electroluminescent devices and photorefractive systems

(Note: The full text of this document is currently only available in the PDF Version )

Mukundan Thelakkat, Christoph Schmitz, Christoph Hohle, Peter Strohriegl, Hans-Werner Schmidt, Uwe Hofmann, Stefan Schloter and Dietrich Haarer


Abstract

A variety of new functional materials based on triarylamines, such as low molecular weight glasses which possess hole conducting/photoconductive properties as well as amorphous bifunctional materials which combine photoconductive and non-linear optical (NLO) properties in one compound, have been synthesized. The new hole transporting glasses belong to the class of 1,3,5-tris(triaryldiamino)benzenes (TTADB). The hyperbranched structure and the large aryl groups attached as substituents lead to high glass transition temperatures (Tg) of up to 141°C in these compounds. The TTADBs do not recrystallize upon cooling from the melt, but form stable glasses. Cyclic voltammetry studies reveal multi-oxidation stages for these compounds of which the first oxidation is reversible. The HOMO energy values determined from CV for TTADB-1 and TTADB-2 are -4.82 and -4.94 eV, respectively. Light emitting diodes with the structure ITO/TTADB-2/Alq3/Al (where ITO=indium tin oxide) show high efficiency and large current carrying capacity. Further, bifunctional compounds have been synthesized in which a photoconductive moiety such as bis(carbazolyl)triphenylamine or bis(diphenylamino)triphenylamine is covalently bound to different NLO chromophores. Some of these compounds are thermally and morphologically stable amorphous materials, possessing Tg in the range from 85 to 122°C. Cyclic voltammetry measurements reveal that the HOMO energy values are between -4.81 and -5.45 eV. In photorefractive measurements using 40 µm thick samples, a diffraction efficiency of 27%, which corresponds to a refractive index modulation (Δn) of 3.5×10-3, a maximum two beam coupling gain coefficient (Γ) of 90 cm-1 and a response time of 40 ms were obtained.


References

  1. C. H. Chen, J. Shi and C. W. Tang, Macromol. Symp., 1997, 125, 1.
  2. A. Dodabalapur, Z. Bao, A. Makhija, J. G. Laquindanum, V. R. Raju, Y. Feng, H. E. Katz and J. Rogers, Appl. Phys. Lett., 1998, 73, 142 CrossRef CAS.
  3. J. Hagen, W. Schaffrath, P. Otschik, R. Fink, A. Bacher, H.-W. Schmidt and D. Harer, Synth. Methods, 1997, 89, 215 Search PubMed.
  4. W. E. Moerner and S. M. Silence, Chem. Rev., 1994, 94, 127 CrossRef CAS.
  5. M. Stolka, J. F. Yanus and D. M. Pai, J. Phys. Chem., 1984, 88, 4707 CrossRef CAS; S. Heun and P. M. Borsenberger, Chem. Phys., 1995, 200, 245 CrossRef CAS.
  6. K.-Y. Law, Chem. Rev., 1993, 93, 449 CrossRef CAS; P. M. Borsenberger, in Organic Photoreceptors for Imaging Systems, Marcel Dekker, New York, 1993 Search PubMed.
  7. Y. Shirota, in Organic Light-emitting Materials and Devices, ed. Z. H. Kafafi, Proc. SPIE-Int. Soc. Opt. Eng., 1997, 3148, 186 Search PubMed.
  8. S. Tokito, H. Tanaka, A. Okada and Y. Taga, Appl. Phys. Lett., 1996, 69, 878 CrossRef CAS.
  9. M. Thelakkat and H.-W. Schmidt, Adv. Mater., 1998, 10, 219 CrossRef CAS.
  10. K. Naito and A. Miura, J. Phys. Chem., 1993, 97, 6240 CrossRef CAS.
  11. W. Ishikawa, H. Inada, H. Nakano and Y. Shirota, Mol. Cryst. Liq. Cryst., 1992, 211, 431 Search PubMed; Y. Shirota, T. Kobata and N. Noma, Chem. Lett., 1989, 1145 CAS; H. Inada and Y. Shirota, J. Mater. Chem., 1993, 3, 319 RSC; K. Itano, T. Tsuzuki, H. Ogawa, S. Appleyard, M. R. Willis and Y. Shirota, IEEE T rans. Electron Devices., 1997, 44, 1218 CrossRef CAS; K. Katsuma and Y. Shirota, Adv. Mater., 1998, 10, 223 CrossRef CAS.
  12. Y. Zhang, S. Ghosal, M. K. Casstevens and R. Burzynski, Appl. Phys. Lett., 1995, 66, 256 CrossRef CAS.
  13. H. J. Bolink, C. Arts, V. V. Krasnikov, G. G. Malliaras and G. Hadziioannou, Chem. Mater., 1997, 9, 1407 CrossRef CAS.
  14. U. Hofmann, S. Schloter, A. Screiber, K. Hoechstetter, G. Bäuml, S. J. Zilker, D. Haarer, M. Thelakkat, H.-W. Scmidt, K. Ewert and C.-D. Eisenbach, Proc. SPIE-Int. Soc. Opt. Eng., 1998, 3471, 124 Search PubMed.
  15. O. Zobel, M. Eckel, P. Strohriegl and D. Haarer, Adv. Mater., 1995, 7, 911 CAS.
  16. C. Hohle, P. Strohriegl, S. Schloter, U. Hofmann and D. Haarer, Proc. SPIE-Int. Soc. Opt. Eng., 1998, 3471, 29 Search PubMed.
  17. S. Gauthier and J. M. J. Frechet, Synthesis, 1987, 383 CrossRef CAS.
  18. W. Ishikawa, K. Noguchi, Y. Kuwabara and Y. Shirota, Adv. Mater., 1993, 5, 559 CrossRef CAS.
  19. G. Gritzner and J. Kuta, Pure Appl. Chem., 1984, 56, 462.
  20. J. Pommerehne, H. Vestweber, W. Gusws, R. F. Mahrt, H. Bässler, M. Porsch and J. Daub, Adv. Mater., 1995, 7, 551 CrossRef CAS.
  21. A. J. Bard and L. R. Faulkner, Electrochemical Methods–Fundamentals and Applications, Wiley, New York, 1980, ch. 14, p. 634 Search PubMed.
  22. H. M. Koepp, H. Wendt and H. Strehlow, Z. Elektrochem., 1960, 64, 483 Search PubMed.
  23. M. Thelakkat, R. Fink, P. Pösch, J. Ring and H.-W. Schmidt, Polym. Prep., 1997, 38, 394 Search PubMed.
  24. H. J. Bolink, V. V. Krasnikov and G. Hadziioannou, Proc. SPIE-Int. Soc. Opt. Eng., 1997, 3144, 124 Search PubMed.
  25. (a) C. Schmitz, M. Thelakkat and H.-W. Schmidt, Adv. Mater., submitted Search PubMed; (b) C. Schmitz, M. Thelakkat and H.-W. Schmidt, Phys. Chem. Chem. Phys., 1999, 1, 1777 RSC.
  26. S. A. Van Slyke, C. H. Chen and C. W. Tang, Appl. Phys. Lett., 1996, 69, 2160 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.