Charge carrier transport in poly(p-phenylenevinylene) light-emitting devices

(Note: The full text of this document is currently only available in the PDF Version )

S Forero, P H. Nguyen, W Brütting and M Schwoerer


Abstract

The role of doping and trap states for charge carrier transport in light-emitting devices based on unsubstituted poly(p-phenylenevinylene) (PPV) was investigated and charge carrier mobilities were determined by different techniques. Using temperature dependent impedance spectroscopy and thermally stimulated currents, the energetic depth and density of states created by doping of PPV during device fabrication on different substrate materials were determined. It was found that the conversion of PPV on indium–tin oxide (ITO) substrates creates shallow traps with a depth of about 0.1–0.2 eV, which are responsible for the p-type doping of PPV and govern the room temperature device characteristics. The total density of ionized acceptors at room temperature is of the order of 1016–1017 cm-3. The temperature dependent behaviour of electrical transport quantities such as conductivity and mobility is dominated by deeper states with energies in the range 0.6–1 eV. Their density can be varied by applying a vacuum to the devices. The charge carrier mobility in PPV was determined by the time-of-flight (TOF) method on devices with the configuration ITO/PPV/Al, which is typically used in light-emitting diodes. Hole mobilities in the region of 10-5 cm2 V-1 s-1 at room temperature for an electric field of about 105 V cm-1 were obtained. Field and temperature dependent TOF measurements yielded an exponential increase in the mobility with increase in the applied field and thermally activated behaviour with activation energies between 0.4 and 0.7 eV on different samples. The values of the mobility at room temperature are consistent with space-charge limited currents, but considerably larger than the values from transient electroluminescence measurements. This indicates that the transit times obtained by the latter method are dominated by the much lower electron mobility rather than by the hole mobility. Assuming luminescence quenching within a distance of 20 nm of the Al contact, an electron mobility of about 10-8 cm2 V-1 s-1 can be estimated at room temperature and fields in the region of 105 V cm-1.


References

  1. J. Kanicki, in Handbook of Conducting Polymers, ed. T. A. Skotheim, Marcel Dekker, New York, 1986, p. 543 Search PubMed.
  2. J. H. Burroughes, C. A. Jones and R. H. Friend, Nature (London), 1988, 335, 137 CrossRef.
  3. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Mackay, R. H. Friend, P. L. Burn and A. B. Holmes, Nature (London), 1990, 347, 539 CrossRef CAS.
  4. D. Braun and A. J. Heeger, Appl. Phys. Lett., 1991, 58, 1982 CrossRef CAS.
  5. D. D. C. Bradley, Synth. Met., 1993, 54, 401 CrossRef CAS.
  6. N. C. Greenham and R. H. Friend, in Solid State Physics, ed. H. Ehrenreich and F. Spaepen, Academic Press, Boston, 1995, vol. 49, p. 2 Search PubMed.
  7. W. Riess, in Organic Electroluminescent Materials and Devices, ed. S. Miyata and H. Nalwa, Gordon and Breach, London, 199, p. 73 Search PubMed.
  8. R. H. Friend, N. C. Greenham, in Handbook of Conducting Polymers, ed. T. A. Skotheim, R. L. Elsenbaumer and J. R. Reynolds, Marcel Dekker, New York, 2nd edn., 1998, p. 823 Search PubMed.
  9. C. Liedenbaum, Y. Croonen, P. van de Weijer, J. Vleggaar and H. Schoo, Synth. Met., 1997, 91, 109 CrossRef CAS.
  10. J. C. Carter, I. Grizzi, S. K. Heeks, D. J. Lacey, S. G. Latham, P. G. May, O. Ruiz de los Panos, K. Pichler, C. R. Towns and H. F. Wittmann, Appl. Phys. Lett., 1997, 71, 34 CrossRef CAS.
  11. N. Tesler, N. T. Harrison and R. H. Friend, Adv. Mater., 1998, 10, 64.
  12. I. D. Parker, J. Appl. Phys., 1994, 75, 1656 CrossRef CAS.
  13. R. N. Marks, D. D. C. Bradley, R. W. Jackson, P. L. Burn and A. B. Holmes, Synth. Met., 1993, 55, 4128 CrossRef.
  14. A. J. Campbell, D. D. C. Bradley and D. G. Lidzey, J. Appl. Phys., 1997, 82, 6326 CrossRef CAS.
  15. P. W. M. Blom, M. J. M. de Jong and M. G. van Munster, Phys. Rev. B, 1997, 55, R656 CrossRef CAS.
  16. P. W. M. Blom and M. J. M. de Jong, IEEE J. Sel. Top. Quantum Electron, 1998, 4, 105 CrossRef CAS.
  17. M. Meier, S. Karg and W. Riess, J. Appl. Phys., 1997, 82, 1961 CrossRef CAS.
  18. S. Karg, M. Meier and W. Riess, J. Appl. Phys., 1997, 82, 1951 CrossRef CAS.
  19. M. Herold, J. Gmeiner, C. Drummer and M. Schwoerer, J. Mater. Sci., 1997, 32, 5709 CrossRef CAS.
  20. G. Sauer, M. Kilo, M. Hund, A. Wokaun, S. Karg, M. Meier, W. Riess, M. Schwoerer, H. Suzuki, J. Simmerer, H. Meyer and D. Haarer, Fresenius' J. Anal. Chem., 1996, 353, 642 CrossRef.
  21. W. Brütting, M. Meier, M. Herold, S. Karg and M. Schwoerer, Chem. Phys., 1998, 227, 243 CrossRef CAS.
  22. J. Scherbel, P. H. Nguyen, G. Paasch, W. Brütting and M. Schwoerer, J. Appl. Phys., 1998, 83, 5045 CrossRef CAS.
  23. M. Meier, S. Karg, K. Zuleeg, W. Brütting and M. Schwoerer, J. Appl. Phys., 1998, 84, 87 CrossRef CAS.
  24. E. Lebedev, T. Dittrich, V. Petrova-Koch, S. Karg and W. Brütting, Appl. Phys. Lett., 1997, 71, 2686 CrossRef CAS.
  25. W. Brütting, E. Lebedev, S. Karg, T. Dittrich, V. Petrova-Koch and M. Schwoerer, Proc. SPIE, 1998, 3281, 257 Search PubMed.
  26. J. R. MacDonald, Impedance Spectroscopy, Wiley, New York, 1987 Search PubMed.
  27. P. Blood and J. W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States Techniques of Physics, Academic Press, London, 1992 Search PubMed.
  28. C. J. F. Böttcher and P. Bordewijk, Theory of Electric Polarization, Elsevier, Amsterdam, 1978, vols. 1 and 2 Search PubMed.
  29. A. K. Johnscher, Dielectric Relaxation in Solids, Chelsea Dielectrics, London, 1983 Search PubMed.
  30. S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981 Search PubMed.
  31. P. S. Davids, A. Saxena and D. L. Smith, J. Appl. Phys., 1985, 78, 4244 CrossRef.
  32. G. Paasch, P. H. Nguyen and S.-L. Drechsler, Synth. Met., 1998, 97, 255 CrossRef CAS.
  33. T. P. Nguyen and V. H. Tran, Mater. Sci. Eng. B, 1995, 31, 255 Search PubMed.
  34. J. Gmeiner, S. Karg, M. Meier, W. Riess, P. Strohriegl and M. Schwoerer, Acta Polym., 1993, 44, 201 CAS.
  35. G. Paasch, W. Riess, S. Karg, M. Meier and M. Schwoerer, Synth. Met., 1994, 67, 177 CAS.
  36. J. Slowik, J. Appl. Phys., 1976, 47, 2982 CrossRef CAS.
  37. R. Eiermann, W. Hofberger and H. Bässler, J. Non-Cryst. Solids, 1978, 28, 415 CAS.
  38. I. Glowacki and J. Ulanski, J. Appl. Phys., 1995, 78, 1995.
  39. E. Fabre and R. N. Bhargava, Appl. Phys. Lett., 1974, 24, 322 CAS.
  40. R. Haering and E. N. Adams, Phys. Rev., 1960, 117, 451 CrossRef CAS.
  41. T. Cowell and J. Woods, Br. J. Appl. Phys., 1967, 18, 1045 Search PubMed.
  42. A. J. Campbell, W. S. Weaver, D. G. Lidzey, D. D. C. Bradley, E. Werner, W. Brütting and M. Schwoerer, Proc. SPIE, 1998, 3476, 98 Search PubMed.
  43. D. M. Taylor, H. Gomes, A. E. Underhill, S. Edge and P. I. Clemenson, J. Phys. D: Appl. Phys., 1991, 24, 2032 CrossRef CAS.
  44. M. Gailberger and H. Bässler, Phys. Rev. B, 1991, 44, 8643 CrossRef CAS.
  45. H. Meyer, D. Haarer, N. Naarmann and H. H. Hörhold, Phys. Rev. B, 1995, 52, 2587 CrossRef CAS.
  46. P. M. Borsenberger and D. S. Weiss, Organic Photoreceptors for Imaging Systems, Marcel Dekker, New York, 1993 Search PubMed.
  47. H. Antoniadis, M. A. Abkowitz and B. R. Hsieh, Appl. Phys. Lett., 1994, 65, 2030 CrossRef CAS.
  48. P. W. M. Blom, M. J. M. de Jong and J. J. M. Vleggar, Appl. Phys. Lett., 1996, 68, 3308 CrossRef CAS.
  49. D. Emin, in Electronic and Structural Properties of Amorphous Semiconductors, ed. P. G. Lecomber and J. Mort, Academic Press, New York, 1973 Search PubMed.
  50. S. Karg, V. Dyakonov, M. Meier, W. Riess and G. Paasch, Synth. Met., 1994, 67, 165 CAS.
  51. H. Kurzcewska and H. Bässler, J. Lumin., 1977, 15, 261 CrossRef.
  52. J. Grüner, M. Remmers and D. Neher, Adv. Mater., 1997, 9, 964 CAS.
  53. H. Becker, S. E. Burns and R. H. Friend, Phys. Rev. B, 1997, 56, 1893 CrossRef CAS.
  54. V. R. Nikitenko, Y.-H. Tak and H. Bässler, J. Appl. Phys., 1998, 84, 2334 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.