Modification by lanthanide (La, Ce) promotion of catalytic properties of palladium: Characterization of the catalysts

(Note: The full text of this document is currently only available in the PDF Version )

K Kili, L Hilaire and F Le Normand


Abstract

Pd/γ-Al2O3 catalysts modified by cerium or lanthanum oxide were prepared according to a standard procedure. The nature of the interaction between the metallic particles and the promoted support was addressed. The effects of changing the following parameters were studied: (i) precursor palladium salt (chloride or nitrate), (ii) content of lanthanide (from the unpromoted catalyst to the pure lanthanide oxide) and (iii) nature of the lanthanide (La or Ce). This paper focuses on the study of the transition metal, whereas the lanthanide redox properties have been reported in an earlier paper (J. Phys. Chem., 1988, 92, 2561). Both structural [transmission electron microscopy (TEM), and extended X-ray absorption fine structure (EXAFS) at the Pd K edge] and spectroscopic investigations (XPS at the Pd 3d core level) emphasize the role of the precursor palladium salt. When derived from a palladium chloride precursor and after a standard treatment including calcination and reduction, the chloride ion is quantitatively trapped by the support and the metal–support interaction is strong. This is thought to be due to the preferential localization of the chlorine atoms in bridge positions between the metal and the lanthanide. When exposed to an air atmosphere, the palladium atoms at the interface are partially chlorided and cerium is in the +4 oxidation state. After a mild H2 treatment at 150°C, palladium is fully reduced, except when the cerium content is within 1–5% where the reduction is only partial. Cerium is converted into the trivalent oxidation state either as a chlorinated or an oxychlorinated form. It is thought that this metal–support interaction at the interface, which does not exist in the nitrate precursor catalysts, might explain the catalytic behaviour of such catalysts by the creation of new active sites or a promoting effect (J. Mol. Catal. A, in the press). The strength of this interaction depends on the cation of the support at the interface (Ce3+>La3+>Al3+) and is stronger for a cerium content between 1 and 5%.


References

  1. K. Taylor, in Catalysis Science and Technology, ed. J. R. Anderson and M. Boudart, Springer-Verlag, Berlin, 1984, vol. 5, p. 119 Search PubMed.
  2. B. Harrison, A. F. Diwell and C. Hallett, Platinum Met. Rev., 1988, 32, 73 Search PubMed.
  3. M. Ichikawa, S. Shikakura and T. Matsumoto, Nippon Kagaku, 1982, 2, 213 Search PubMed.
  4. J. C. Summers and S. A. Ausen, J. Catal., 1979, 58, 131 CrossRef CAS.
  5. P. Meriaudeau, J. F. Dutel, M. Dufaux and C. Naccache, Studies in Surface Science and Catalysis, Elsevier, Amsterdam, 1982, vol. II, p. 95 Search PubMed.
  6. T. H. Fleisch, R. Hicks and A. T. Bell, J. Catal., 1984, 87, 398 CrossRef.
  7. Yu. A. Ryndin, Yu. N. Nogin, V. I. Zaikovskii, K. Jacob, K. H. Thiele and Yu. I. Yermakov, React. Kinet. Catal. Lett., 1985, 29, 395 CAS.
  8. C. Suddhakar and A. Vannice, J. Catal., 1985, 95, 227 CrossRef.
  9. J. S. Rieck and A. T. Bell, J. Catal., 1986, 99, 278 CrossRef CAS.
  10. Y. F. Y. Yao, J. Catal., 1984, 87, 152 CrossRef CAS.
  11. H. G. Yao and Y. F. Y. Yao, J. Catal., 1984, 86, 254 CrossRef CAS.
  12. F. Le Normand, P. Bernhardt, L. Hilaire, K. Kili, G. Krill and G. Maire, Studies in Surface Science and Catalysis, Elsevier, Amsterdam, 1987, vol. 30, p. 221 Search PubMed.
  13. F. Le Normand, L. Hilaire, K. Kili, P. Bernhardt and G. Krill, in Proceedings of the 4th International Congress on EXAFS and Near Edge Structure, ed. P. Lagarde, D. Raoux and J. Petiau, Les Editions de Physique, Paris, 1987, vol. 2, p. 961 Search PubMed.
  14. F. Le Normand, L. Hilaire, K. Kili, G. Krill and G. Maire, J. Phys. Chem., 1988, 92, 2561 CrossRef CAS.
  15. L. Hilaire, K. Kili and F. Le Normand, Trends Phys. Chem., 1995, 4, 317 Search PubMed.
  16. F. Le Normand, J. Barrault, R. Breault, L. Hilaire and A. Kiennemann, J. Phys. Chem., 1991, 95, 257 CrossRef CAS.
  17. K. Kili and F. Le Normand, J. Mol. Catal. A, in the press Search PubMed.
  18. J. L. Schmitt, Thesis, University of Strasbourg, 1980.
  19. J. H. Scofield, J. Electron Spectrosc. Relat. Phenom., 1976, 8, 129 CrossRef CAS.
  20. M. P. Seah and W. A. Dench, Surface Interface Anal., 1979, 1, 1 Search PubMed.
  21. M. P. Seah, in Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, ed. M. P. Seah and D. Briggs, Wiley, Chichester, 1983, p. 181 Search PubMed.
  22. S. Doniach and M. Sunjic, J. Phys. C, 1970, 3, 235 CrossRef.
  23. S. Hufner and G. K. Wertheim, Phys. Rev. B, 1975, 11, 678 CrossRef.
  24. P. Lagarde and H. Dexpert, Adv. Phys., 1984, 33, 567 CAS.
  25. K. S. Kim, A. F. Gossmann and N. Winograd, Anal. Chem., 1974, 46, 197 CrossRef CAS.
  26. F. Le Normand, K. Kili and J. L. Schmitt, J. Catal., 1993, 139, 234 CrossRef CAS.
  27. F. Bozon-Verduraz, A. Omar, J. Escard and B. Pontvianne, J. Catal., 1978, 53, 126 CAS.
  28. C. D. Wagner, W. M. Riggs, L. E. Davis and J. F. Moulder, Handbook of X-Ray Photoelectron Spectroscopy, ed. G. E. Muilenberg, Perkin-Elmer, Offenbach, 1978 Search PubMed.
  29. L. Wyckoff, in Crystal Structures, Interscience, New York, 2nd edn., 1964, vol. 3, p. 140 Search PubMed.
  30. L. Kepinski and M. Wolcyrz, J. Chem. Soc., Faraday Trans., 1995, 91, 507 RSC.
  31. G. Kumar, G. R. Blackburn, R. G. Albridge, W. E. Moodeman and M. M. Jones, Inorg. Chem., 1972, 11, 296 CrossRef CAS.
  32. J. M. Tura, P. Regull, L. Victori and M. Dolers de Castellar, Surface Interface Anal., 1988, 11, 447 Search PubMed.
  33. F. Le Normand, K. Kili and P. Gallezot, unpublished work.
  34. M. Robson de Souza, F. B. Noronha, L. D. Dieguez and M. Schmal, Appl. Catal. A, 1995, 131, 89 CrossRef.
  35. (a) M. G. Mason, L. J. Gerenser and S. T. Lee, Phys. Rev. Lett., 1977, 89, 288 CrossRef; (b) C. Bonnelle, in Les Agregats, Les Editions de Physique, Les Ulis, 1981, p. 247 Search PubMed.
  36. CRC Handbook of Chemistry and Physics, CRC Press, Cleveland, OH, 1971 Search PubMed.
  37. P. V. Klevtzov, C.R. Acad. Sci., Ser. C, 1968, 266, 385 Search PubMed.
  38. A. Kiennemann, R. Breault, J. P. Hindermann and M. Laurin, Faraday Symp. Chem. Soc., 1986, 21, paper 14 Search PubMed.
  39. T. Jin, T. Okuhara, G. J. Mains and J. M. White, J. Phys. Chem., 1987, 91, 3310 CrossRef CAS.
  40. E. Ramaroson, J. F. Tempere, M. F. Guilleux and D. Delafosse, Proceedings of the Xth Ibero-American Symposium on Catalysis, Guanajuato, Mexico, 1988 Search PubMed.
  41. S. H. Oh and C. C. Eickel, J. Catal., 1988, 112, 543 CrossRef CAS.
  42. J. Barrault, A. Allouche, V. Paul-Boncour, L. Hilaire and A. Percheron-Guegan, Appl. Catal., 1989, 46, 269 Search PubMed.
  43. H. Sadeghi and V. E. Heinrich, J. Catal., 1984, 87, 279 CAS.
  44. G. I. Straguzzi, H. R. Aduriz and C. E. Gigola, J. Catal., 1980, 66, 171 CrossRef CAS.
  45. J. P. Franck and G. Martino, in Progress on Catalytic Deactivation, ed. J. L. Figueiredo and M. Nijhoff, The Hague, 1982, p. 355 Search PubMed.
  46. F. Le Normand, D. Bazin, J. P. Bournonville, H. Dexpert and P. Lagarde, Proceedings of the IXth International Congress on Catalysis, Calgary, Canada, 1988, ed. M. J. Philips and M. Teruau, Chemical Institute of Canada, Ottawa, 1988, 1401 Search PubMed.
  47. F. Le Normand, A. Borgna, T. F. Garetto, C. R. Apesteguia and B. Moraweck, J. Phys. Chem., 1996, 100, 9068 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.