Quantum studies of H2O+Cl→HO+HCl and H2O+Br→HO+HBr reactions. A comparison of two reduced dimensionality approaches

(Note: The full text of this document is currently only available in the PDF Version )

N Rougeau, G Nyman and C Kubach


Abstract

3D quantum calculations using both the rotating bond approximation (RBA) and the fixed angle potential averaged (FAPA) approximation have been performed to obtain cross sections for the H2O+Cl→HO+HCl and H2O+Br→HO+HBr reactions. The two models mainly differ in the motions that are allowed to the H-spectator atom and to the H-reactive atom. Cross sections for the H2O(m, n)+Cl→HO+HCl and H2O(m, n)+Br→HO+HBr reactions have been calculated for a wide range of the bending quantum number m and the local stretching quantum number n. The cross sections, as functions of the translational energy, summed over all the product states, exhibit very interesting features when considering series of H2O(m, n)+X entrance channels with the value of n fixed within a series. For the H2O+Cl system, for which the considered total energy range extends from 0 to 1.6 eV above the H2O(0, 0)+Cl limit, in each n=0, 1 and 2 series, the cross sections for the H2O(m variable, n fixed)+Cl entrance channels have approximately the same energy threshold and similar shapes above the threshold. These results, obtained with the RBA and FAPA approaches, show that the bending excitation does not significantly enhance the reactivity. On the other hand, the local stretching excitation is found to very efficiently promote reaction. For the H2O+Br system, for which the considered energy range is wider (0–2.2 eV), the agreement between the results obtained with the two methods is less satisfactory. However, the disagreement concerns highly excited bending states which lie at significantly different energies in the two calculations. The common energy threshold and similar shape are obtained for the n=2 (FAPA) and n=3 (RBA) series and for excited bending states for the n=0 and n=1 series. All these properties are analysed on the basis of potential energy curves related to the motion of the H-atoms, for fixed O–Cl or O–Br distances.


References

  1. D. Neuhauser, J. Chem. Phys., 1994, 100, 9272 CrossRef CAS.
  2. D. H. Zhang and J. Z. H. Zhang, J. Chem. Phys., 1994, 101, 1146 CrossRef CAS.
  3. D. H. Zhang and J. Z. H. Zhang, in Dynamics of Molecules and Chemical Reactions, ed. R. E. Wyatt and J. Z. H. Zhang, Marcel Dekker, New York, 1996 Search PubMed.
  4. D. H. Zhang and J. C. Light, J. Chem. Phys., 1996, 104, 4544 CrossRef CAS.
  5. D. H. Zhang, J. C. Light and S. Y. Lee, J. Chem. Phys., 1998, 109, 79 CrossRef CAS.
  6. J. M. Bowman, J. Phys. Chem., 1991, 95, 4960 CrossRef CAS.
  7. D. C. Clary, J. Phys. Chem., 1994, 98, 10678 CrossRef CAS.
  8. G. Nyman, J. Chem. Phys., 1996, 104, 6154 CrossRef CAS.
  9. D. C. Clary and J. Palma, J. Chem. Phys., 1997, 106, 575 CrossRef CAS.
  10. G. Nyman and D. C. Clary, J. Chem. Phys., 1994, 101, 5756 CrossRef CAS.
  11. D. Wang and J. M. Bowman, J. Chem. Phys., 1994, 101, 8646 CrossRef CAS.
  12. G. Nyman, D. C. Clary and R. D. Levine, Chem. Phys., 1995, 191, 223 CrossRef CAS.
  13. T. Takayanagi, J. Chem. Phys., 1996, 104, 2237 CrossRef CAS.
  14. J. L. L. Garrec, B. R. Rowe, J. L. Queffelec, J. B. A. Mitchell and D. C. Clary, J. Chem. Phys., 1997, 107, 1021 CrossRef CAS.
  15. G. Nyman, H. G. Yu and R. B. Walker, J. Chem. Phys., 1998, 109, 5896 CrossRef CAS.
  16. H. G. Yu and G. Nyman, Phys. Chem. Chem. Phys., 1999, 1, 1181 RSC.
  17. A. Sinha, M. C. Hsiao and F. F. Crim, J. Chem. Phys., 1991, 94, 4928 CrossRef CAS.
  18. M. J. Bronikovski, W. R. Simpson, B. Girard and R. N. Zare, J. Chem. Phys., 1991, 95, 8647 CrossRef.
  19. A. Sinha, J. D. Thoemke and F. F. Crim, J. Chem. Phys., 1992, 96, 372 CrossRef CAS.
  20. R. B. Metz, J. D. Thoemke, J. M. Pfeiffer and F. F. Crim, J. Chem. Phys., 1993, 99, 1744 CrossRef CAS.
  21. K. Kudla and G. C. Schatz, Chem. Phys., 1993, 175, 71 CrossRef CAS.
  22. G. Nyman and D. C. Clary, J. Chem. Phys., 1994, 100, 3556 CrossRef CAS.
  23. N. Rougeau and C. Kubach, Chem. Phys. Lett., 1999, 299, 120 CrossRef CAS.
  24. D. C. Clary, J. Chem. Phys., 1991, 95, 7298 CrossRef CAS.
  25. D. C. Clary, J. Chem. Phys., 1992, 96, 3656 CrossRef CAS.
  26. D. C. Clary, Chem. Phys. Lett., 1992, 192, 34 CrossRef CAS.
  27. G. Nyman and D. C. Clary, J. Chem. Phys., 1993, 99, 7774 CrossRef CAS.
  28. D. C. Clary and G. C. Schatz, J. Chem. Phys., 1993, 99, 4578 CrossRef CAS.
  29. D. C. Clary, G. Nyman and R. Hernandez, J. Chem. Phys., 1994, 101, 3704 CrossRef CAS.
  30. C. Kubach, Chem. Phys. Lett., 1989, 164, 475 CrossRef CAS.
  31. C. Kubach, G. Nguyen Vien and M. Richard-Viard, J. Chem. Phys., 1991, 94, 1929 CrossRef CAS.
  32. G. Nguyen Vien, N. Rougeau and C. Kubach, Chem. Phys. Lett., 1993, 215, 35 CrossRef.
  33. N. Rougeau and C. Kubach, Chem. Phys. Lett., 1993, 175, 299 CrossRef CAS.
  34. N. Rougeau and C. Kubach, Chem. Phys. Lett., 1995, 246, 664 CrossRef CAS.
  35. N. Rougeau, S. Marcotte and C. Kubach, J. Chem. Phys., 1996, 105, 8653 CrossRef CAS.
  36. C. Kubach and N. Rougeau, J. Mol. Struct. THEOCHEM, 1998, 424, 171 CrossRef CAS.
  37. F. T. Smith, Phys. Rev., 1969, 179, 111 Search PubMed.
  38. G. Schatz, M. C. Colton and J. L. Grant, J. Phys. Chem., 1984, 88, 2971 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.