Mechanism and kinetics of homogeneous 1-methyl-carbamidopyridinyl radical reactions

(Note: The full text of this document is currently only available in the PDF Version )

Robert J. Forster


Abstract

The effect of changing the substitution pattern on the mechanism and kinetics of homogeneous solution reactions of electrogenerated 1-methyl-carbamidopyridinyl radicals has been investigated. The dynamics and energetics of the reactions of 1-methyl-3-carbamidopyridinium, 1-methyl-4-carbamidopyridinium and 1-methyl-3,4-dicarbamidopyridinium perchlorate have been explored using fast scan cyclic voltammetry and double potential step chronoamperometry conducted on a microsecond timescale at ultramicroelectrodes. The reaction mechanisms have been probed by determining the dependence of the peak potential, the peak currents and current ratios on the experimental timescale, the pyridinium concentration and solution pH. 1-Methyl-3-carbamidopyridinyl radicals react via a dimerisation mechanism involving direct coupling of the electrogenerated neutral radicals at a rate of approximately 1.6±0.1×107 M-1 s-1 in DMF containing 1.0 M tetraethylammonium perchlorate (TEAP) as supporting electrolyte. The 1-methyl-4-carbamidopyridinyl and 1-methyl-3,4-dicarbamidopyridinyl radicals react via a pH dependent ECE–DISP1 mechanism, E, C and DISP denote electron transfer, following chemical and disproportionation reactions, respectively. In this mechanism, the radical, R, generated after the first electron transfer step (E), reacts with the protonated radical, RH+, and RH+ reacts with other RH+ to yield pyridinium and a dihydropyridine. The rate constant for the reaction of 1-methyl-4-carbamidopyridinyl radicals in aqueous acetate buffer at pH 7 is approximately 1.6±0.1×105 M-1 s-1. In contrast, the rate constant for the loss of 1-methyl-3,4-carbamidopyridinyl radicals is significantly smaller being approximately 1.2±0.1×103 M-1 s-1. This reduced rate constant reflects both steric constraints and the electron withdrawing character of the second carbamido group which stabilises the radical species. In all three cases, temperature resolved potential step measurements reveal low activation energies (<40 kJ mol-1) which are consistent with the rapid nature of the radical coupling reactions observed.


References

  1. L. L. Miller and J. R. Valentine, J. Am. Chem. Soc., 1988, 110, 3892 CrossRef.
  2. B. N. Carlson and L. L. Miller, J. Am. Chem. Soc., 1985, 107, 479 CrossRef CAS.
  3. M. M. Kreevoy, D. Ostovic, I. S. Lee, D. A. Blinder and G. W. King, J. Am. Chem. Soc., 1988, 110, 524 CrossRef CAS.
  4. J. Hermolin, M. Levin, Y. Ikagami, M. Sawayanagi and E. M. Kosower, J. Am. Chem. Soc., 1988, 103, 4795.
  5. A. L. Underwood and R. W. Burnett, Electrochemistry of Biological Compounds in Electroanalytical Chemistry, ed. A. J. Bard, Marcel Dekker, New York, 1973, vol. 6, p. 1 Search PubMed.
  6. P. J. Elving, C. O. Schmakel and K. S. V. Santhanam, CRC Crit. Rev. Anal. Chem., 1973, 6, 1 Search PubMed.
  7. P. Hapiot, J. Moiroux and J. M. Savéant, J. Am. Chem. Soc., 1990, 112, 1337 CrossRef CAS.
  8. R. J. Forster, Ultrafast Electrochemical Techniques, in the Encyclopedia of Analytical Chemistry, Wiley, New York, in the press Search PubMed.
  9. C. A. Amatore, A. Jutland and F. Pflüger, J. Electroanal. Chem., 1987, 218, 361 CrossRef CAS.
  10. R. J. Forster, Inorg. Chem., 1996, 35, 3394 CrossRef CAS.
  11. R. J. Forster, Anal. Chem., 1996, 68, 3143 CrossRef CAS.
  12. R. J. Forster and T. E. Keyes, J. Phys. Chem. B, 1998, 102, 10004 CrossRef CAS.
  13. C. P. Andrieux and J. M. Savéant, Investigations of Rates and Mechanisms of Reactions, ed. C. Bernasconi, Wiley, New York, 1986, vol. 6, 4/E, part 2, p. 305 Search PubMed.
  14. E. M. Kosower and P. E. Klinedinst, J. Am. Chem. Soc., 1956, 78, 3493 CrossRef.
  15. L. R. Faulkner, M. R. Walsh and C. Xu, Contemporary Electroanalytical Chemistry, ed. A. Ivaska, Plenum Press, New York, 1990, p. 5 Search PubMed.
  16. R. M. Wightman and D. O. Wipf, Electroanalytical Chemistry, ed. A. J. Bard, Marcel Dekker, New York, 1989,vol. 15, p. 267 Search PubMed.
  17. A. J. Bard and L. R. Faulkner, Electrochemical Methods, Wiley, New York, 1980, p. 181 Search PubMed.
  18. R. S. Nicholson, Anal. Chem., 1965, 37, 667 CrossRef CAS.
  19. R. S. Nicholson and I. Shain, Anal. Chem., 1964, 36, 706 CrossRef CAS.
  20. L. Nadjo and J. M. Savéant, J. Electroanal. Chem., 1973, 113, 48.
  21. J. M. Savéant and E. Vianello, Electrochim. Acta, 1967, 12, 1545 CrossRef CAS.
  22. C. Amatore and J. M. Savéant, J. Electroanal. Chem., 1983, 144, 59 CrossRef CAS.
  23. J. M. Savéant and E. Vianello, C. R. Acad. Sci. Paris, 1963, 256, 2597 Search PubMed.
  24. C. P. Andrieux, L. Nadjo and J. M. Savéant, J. Electroanal. Chem., 1973, 42, 223 CrossRef CAS.
  25. C. Amatore, D. Garreau, M. Hamni, J. Pinson and J. M. Savéant, J. Electroanal. Chem., 1984, 184, 1 CrossRef.
  26. C. P. Andrieux, P. Hapiot and J. M. Savéant, J. Phys. Chem., 1988, 92, 5992 CrossRef CAS.
  27. E. M. Kosower, A. Teuerstein, H. D. Burrows and A. Swallow, J. Am. Chem. Soc., 1978, 100, 5185 CrossRef CAS.
  28. C. O. Schmakel, K. S. V. Santhanam and P. J. Elving, J. Am. Chem. Soc., 1975, 97, 5083 CrossRef CAS.
  29. C. Amatore, M. Gareil and J. M. Savéant, J. Electroanal. Chem., 1983, 147, 1 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.